scholarly journals Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa

Gut ◽  
2021 ◽  
pp. gutjnl-2021-325310
Author(s):  
Brianna Caldwell ◽  
Anne R Meyer ◽  
Jared A Weis ◽  
Amy C Engevik ◽  
Eunyoung Choi

ObjectiveMetaplasia arises from differentiated cell types in response to injury and is considered a precursor in many cancers. Heterogeneous cell lineages are present in the reparative metaplastic mucosa with response to injury, including foveolar cells, proliferating cells and spasmolytic polypeptide-expressing metaplasia (SPEM) cells, a key metaplastic cell population. Zymogen-secreting chief cells are long-lived cells in the stomach mucosa and have been considered the origin of SPEM cells; however, a conflicting paradigm has proposed isthmal progenitor cells as an origin for SPEM.DesignGastric intrinsic factor (GIF) is a stomach tissue-specific gene and exhibits protein expression unique to mature mouse chief cells. We generated a novel chief cell-specific driver mouse allele, GIF-rtTA. GIF-GFP reporter mice were used to validate specificity of GIF-rtTA driver in chief cells. GIF-Cre-RnTnG mice were used to perform lineage tracing during homoeostasis and acute metaplasia development. L635 treatment was used to induce acute mucosal injury and coimmunofluorescence staining was performed for various gastric lineage markers.ResultsWe demonstrated that mature chief cells, rather than isthmal progenitor cells, serve as the predominant origin of SPEM cells during the metaplastic process after acute mucosal injury. Furthermore, we observed long-term label-retaining chief cells at 1 year after the GFP labelling in chief cells. However, only a very small subset of the long-term label-retaining chief cells displayed the reprogramming ability in homoeostasis. In contrast, we identified chief cell-originating SPEM cells as contributing to lineages within foveolar cell hyperplasia in response to the acute mucosal injury.ConclusionOur study provides pivotal evidence for cell plasticity and lineage contributions from differentiated gastric chief cells during acute metaplasia development.

2018 ◽  
Vol 314 (5) ◽  
pp. G583-G596 ◽  
Author(s):  
Hiroto Kinoshita ◽  
Yoku Hayakawa ◽  
Zhengchuan Niu ◽  
Mitsuru Konishi ◽  
Masahiro Hata ◽  
...  

During human gastric carcinogenesis, intestinal metaplasia is frequently seen in the atrophic stomach. In mice, a distinct type of metaplasia known as spasmolytic polypeptide-expressing metaplasia (SPEM) is found in several inflammatory and genetically engineered models. Given the diversity of long- and short-term models of mouse SPEM, it remains unclear whether all models have a shared or distinct molecular mechanism. The origin of SPEM in mice is presently under debate. It is postulated that stem or progenitor cells acquire genetic alterations that then supply metaplastic cell clones, whereas the possibility of transdifferentiation or dedifferentiation from mature gastric chief cells has also been suggested. In this study, we report that loss of chief cells was sufficient to induce short-term regenerative SPEM-like lesions that originated from chief cell precursors in the gastric neck region. Furthermore, Lgr5+ mature chief cells failed to contribute to both short- and long-term metaplasia, whereas isthmus stem and progenitor cells efficiently contributed to long-term metaplasia. Interestingly, multiple administrations of high-dose pulsed tamoxifen induced expansion of Lgr5 expression and Lgr5-CreERT recombination within the isthmus progenitors apart from basal chief cells. Thus we conclude that short-term SPEM represents a regenerative process arising from neck progenitors following chief cell loss, whereas true long-term SPEM originates from isthmus progenitors. Mature gastric chief cells may be dispensable for SPEM development. NEW & NOTEWORTHY Recently, dedifferentiation ability in gastric chief cells during metaplasia development has been proposed. Our findings reveal that lesions that were thought to be acute metaplasia in fact represent normal regeneration supplied from neck lineage and that isthmus stem/progenitors are more responsible for sustained metaplastic changes. Cellular plasticity in gastric chief cells may be more limited than recently highlighted.


2020 ◽  
Author(s):  
Brya G Matthews ◽  
Francesca V Sbrana ◽  
Sanja Novak ◽  
Jessica L. Funnell ◽  
Ye Cao ◽  
...  

AbstractThe periosteum is the major source of cells involved in fracture healing. We sought to characterize differences in progenitor cell populations between periosteum and other bone compartments, and identify periosteal cells involved in fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells. Lineage tracing with αSMACreER identifies periosteal cells that contribute to >80% of osteoblasts and ~40% of chondrocytes following fracture. A subset of αSMA+ cells are quiescent long-term injury-responsive progenitors. Ablation of αSMA+ cells impairs fracture callus formation. In addition, committed osteoblast-lineage cells contributed around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal progenitors, particularly those that form osteoblasts, can be targeted by αSMACreER. We have demonstrated that the periosteum is highly enriched for skeletal stem and progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingqiang Wang ◽  
Daisong Wang ◽  
Kun Chu ◽  
Wen Li ◽  
Yi Arial Zeng

Abstract Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and repair. The OSE replenishing mechanism post ovulation remains unclear. Here we report that the expression of Protein C Receptor (Procr) marks a progenitor population in adult mice that is responsible for OSE repair post ovulation. Procr+  cells are the major cell source for OSE repair. The mechanism facilitating the rapid re-epithelialization is through the immediate expansion of Procr+  cells upon OSE rupture. Targeted ablation of Procr+  cells impedes the repairing process. Moreover, Procr+  cells displayed robust colony-formation capacity in culture, which we harnessed and established a long-term culture and expansion system of OSE cells. Finally, we show that Procr+  cells and previously reported Lgr5+ cells have distinct lineage tracing behavior in OSE homeostasis. Our study suggests that Procr marks progenitor cells that are critical for OSE ovulatory rupture and homeostasis, providing insight into how adult stem cells respond upon injury.


2017 ◽  
Vol 312 (1) ◽  
pp. G67-G76 ◽  
Author(s):  
Victoria G. Weis ◽  
Christine P. Petersen ◽  
Jared A. Weis ◽  
Anne R. Meyer ◽  
Eunyoung Choi ◽  
...  

The plasticity of gastric chief cells is exemplified by their ability to transdifferentiate into spasmolytic polypeptide-expressing metaplasia (SPEM) after parietal cell loss. We sought to determine if chief cell maturity is a limiting factor in the capacity to transdifferentiate. Mist1−/− mice, previously shown to form only immature chief cells, were treated with DMP-777 or L635 to study the capability of these immature chief cells to transdifferentiate into a proliferative metaplastic lineage after acute parietal cell loss. Mist1−/− mice treated with DMP-777 showed fewer chief cell to SPEM transitions. Mist1−/− mice treated with L635 demonstrated significantly fewer proliferative SPEM cells compared with control mice. Thus immature chief cells were unable to transdifferentiate efficiently into SPEM after acute parietal cell loss. To determine whether chief cell age affects transdifferentiation into SPEM, we used tamoxifen to induce YFP expression in chief cells of Mist1CreER/+;RosaYFP mice and subsequently treated the cells with L635 to induce SPEM at 1 to 3.5 mo after tamoxifen treatment. After L635 treatment to induce acute parietal cell loss, 43% of all YFP-positive cells at 1 mo posttamoxifen were SPEM cells, of which 44% of these YFP-positive SPEM cells were proliferative. By 2 mo after tamoxifen induction, only 24% of marked SPEM cells were proliferating. However, by 3.5 mo after tamoxifen induction, only 12% of marked chief cells transdifferentiated into SPEM and none were proliferative. Thus, as chief cells age, they lose their ability to transdifferentiate into SPEM and proliferate. Therefore, both functional maturation and age limit chief cell plasticity. NEW & NOTEWORTHY Previous investigations have indicated that spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach arises from transdifferentiation of chief cells. Nevertheless, the intrinsic properties of chief cells that influence transdifferentiation have been largely unknown. We now report that the ability to transdifferentiate into SPEM is impaired in chief cells that lack full functional maturation, and as chief cells age, they lose their ability to transdifferentiate. Thus chief cell plasticity is dependent on both cell age and maturation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brya G Matthews ◽  
Sanja Novak ◽  
Francesca V Sbrana ◽  
Jessica L Funnell ◽  
Ye Cao ◽  
...  

The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.


2015 ◽  
Vol 112 (13) ◽  
pp. 4003-4008 ◽  
Author(s):  
Lianjun Zhang ◽  
Min Chen ◽  
Qing Wen ◽  
Yaqiong Li ◽  
Yaqing Wang ◽  
...  

Sertoli and Leydig cells, the two major somatic cell types in the testis, have different morphologies and functions. Both are essential for gonad development and spermatogenesis. However, whether these cells are derived from the same progenitor cells and the mechanism regulating the differentiation between these two cell types during gonad development remains unclear. A previous study showed that overactivation of Ctnnb1 (cadherin-associated protein, beta 1) in Sertoli cells resulted in Sertoli cell tumors. Surprisingly, in the present study, we found that simultaneous deletion of Wilms’ Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development. Lineage tracing experiments revealed that the Leydig-like tumor cells were derived from Sertoli cells. Further studies confirmed that Wt1 is required for the maintenance of the Sertoli cell lineage and that deletion of Wt1 resulted in the reprogramming of Sertoli cells to Leydig cells. Consistent with this interpretation, overexpression of Wt1 in Leydig cells led to the up-regulation of Sertoli cell-specific gene expression and the down-regulation of steroidogenic gene expression. These results demonstrate that the distinction between Sertoli cells and Leydig cells is regulated by Wt1, implying that these two cell types most likely originate from the same progenitor cells. This study thus provides a novel concept for somatic cell fate determination in testis development that may also represent an etiology of male infertility in human patients.


Gut ◽  
2017 ◽  
Vol 67 (9) ◽  
pp. 1595-1605 ◽  
Author(s):  
Eunyoung Choi ◽  
Tyler L Lantz ◽  
Gregory Vlacich ◽  
Theresa M Keeley ◽  
Linda C Samuelson ◽  
...  

ObjectiveLrig1 is a marker of proliferative and quiescent stem cells in the skin and intestine. We examined whether Lrig1-expressing cells are long-lived gastric progenitors in gastric glands in the mouse stomach. We also investigated how the Lrig1-expressing progenitor cells contribute to the regeneration of normal gastric mucosa by lineage commitment to parietal cells after acute gastric injury in mice.DesignWe performed lineage labelling using Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) or R26R-LacZ/+ (Lrig1/LacZ) mice to examine whether the Lrig1-YFP-marked cells are gastric progenitor cells. We studied whether Lrig1-YFP-marked cells give rise to normal gastric lineage cells in damaged mucosa using Lrig1/YFP mice after treatment with DMP-777 to induce acute injury. We also studied Lrig1-CreERT2/CreERT2 (Lrig1 knockout) mice to examine whether the Lrig1 protein is required for regeneration of gastric corpus mucosa after acute injury.ResultsLrig1-YFP-marked cells give rise to gastric lineage epithelial cells both in the gastric corpus and antrum, in contrast to published results that Lgr5 only marks progenitor cells within the gastric antrum. Lrig1-YFP-marked cells contribute to replacement of damaged gastric oxyntic glands during the recovery phase after acute oxyntic atrophy in the gastric corpus. Lrig1 null mice recovered normally from acute gastric mucosal injury indicating that Lrig1 protein is not required for lineage differentiation. Lrig1+ isthmal progenitor cells did not contribute to transdifferentiating chief cell lineages after acute oxyntic atrophy.ConclusionsLrig1 marks gastric corpus epithelial progenitor cells capable of repopulating the damaged oxyntic mucosa by differentiating into normal gastric lineage cells in mouse stomach.


2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

2020 ◽  
Vol 4 (s1) ◽  
pp. 102-102
Author(s):  
Allison Milfred Dubner ◽  
Sizhao Lu ◽  
Austin Jolly ◽  
Keith Strand ◽  
Marie Mutryn ◽  
...  

OBJECTIVES/GOALS: Our lab previously identified a population of vascular smooth muscle (SMC)-derived progenitor cells (AdvSca1-SM) which expand robustly in response to disease and can differentiate into multiple cell types. We now aim to define the role of these AdvSca1-SM cells in atherosclerotic plaque progression. METHODS/STUDY POPULATION: Goal one uses SMC lineage tracing mice and a model of atherosclerosis to track reprogramming of SMCs to AdvSca1-SM cells in the setting of disease. Arteries are analyzed using flow cytometry and immunofluorescence to quantify changes in number of mature SMCs and AdvSca1-SM cells. Goal two uses AdvSca1-SM lineage tracing mice with high cholesterol-induced atherosclerosis and plaque neovascularization. Arteries are analyzed to quantify expansion of AdvSca1-SM cells, subsequent re-differentiation into mature SMC, endothelial cells, or macrophages, and contribution to plaque neovascularization. Mechanistic findings from both goals are being investigated in diseased human coronary arteries. RESULTS/ANTICIPATED RESULTS: Flow cytometry from SMC lineage tracing mice revealed a 7- to 13-fold expansion of AdvSca1-SM cells in carotid arteries (p<0.001) and aortas (p = 0.03) after 6 weeks of western diet; no differences in macrophage numbers were observed. Additional SMC and AdvSca1-SM cell lineage tracing mice are on atherogenic diets to assess early and advanced atherosclerosis. We predict that AdvSca1-SM cells will contribute to macrophage accumulation as well as plaque neovascularization in the setting of severe atherosclerosis. Translational relevance of mechanisms driving SMC reprogramming and AdvSca1-SM cell contribution to plaque progression are being applied to studies of diseased human coronary arteries. DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggest a role for AdvSca1-SM cells in atherosclerosis. Ongoing work will clarify the mechanisms driving plaque-associated AdvSca1-SM expansion and define the ultimate fates of these cells. In vivo modulation of this process could provide the basis for future anti-atherosclerotic therapies. CONFLICT OF INTEREST DESCRIPTION: AD - CCTSI TOTTS TL1TR002533; SL - 18POST34030397 from the American Heart Association; AJ – no conflicts; KS - 1F31HL147393 from the National Heart, Lung, and Blood Institute, NIH; MM – no conflicts; RT – no conflicts; KSM – no conflicts; RAN - R01CA236222 from the National Cancer Institute, NIH, and 2018-03 from the Lungevity Foundation; and MCMW-E - R01 HL121877 from the National Heart, Lung, and Blood Institute, NIH, and 25A8679 from the Chernowitz Foundation.


Sign in / Sign up

Export Citation Format

Share Document