scholarly journals Mutational profiling in suspected triple-negative essential thrombocythaemia using targeted next-generation sequencing in a real-world cohort

2020 ◽  
pp. jclinpath-2020-206570
Author(s):  
Olga Michail ◽  
Patrick McCallion ◽  
Julie McGimpsey ◽  
Andrew Hindley ◽  
Graeme Greenfield ◽  
...  

Essential thrombocythaemia (ET) is driven by somatic mutations involving the JAK2, CALR and MPL genes. Approximately 10% of patients lack driver mutations and are referred as ‘triple-negative’ ET (TN-ET). The diagnosis of TN-ET, however, relies on bone marrow examination that is not always performed in routine practice, and thus in the real-world setting, there are a group of cases with suspected TN-myeloproliferativeneoplasm.In this real-world cohort, patients with suspected TN-ET were initially rescreened for JAK2, CALR and MPL and then targeted next-generation sequencing (NGS) was applied.The 35 patients with suspected TN-ET had a median age at diagnosis of 43 years (range 16–79) and a follow-up of 10 years (range 2–28). The median platelet count was 758×109/L (range 479–2903). Thrombosis prior to and following diagnosis was noted in 20% and 17% of patients. Six patients were JAK2V617F and two patients were CALR positive on repeat screening. NGS results showed that 24 of 27 patients harboured no mutations. Four mutations were noted in three patients.There was no evidence of clonality for the majority of patients with suspected TN-ET with targeted NGS analysis. Detection of driver mutations in those who were previously screened suggests that regular rescreening is required. This study also questions the diagnosis of TN-ET without the existence of a clonal marker.

2020 ◽  
Vol 154 (1) ◽  
pp. 57-69
Author(s):  
Carlos A Pagan ◽  
Catherine A Shu ◽  
John P Crapanzano ◽  
Galina G Lagos ◽  
Mark B Stoopler ◽  
...  

Abstract Objectives To determine concordance/discordance between morphology and molecular testing (MT) among synchronous pulmonary carcinomas using targeted next generation sequencing (NGS), with and without comprehensive molecular review (CMR), vs analyses of multiple singe genes (non-NGS). Methods Results of morphologic and MT assessment were classified as concordant, discordant, or indeterminate. For discordant cases, comprehensive histologic assessment (CHA) was performed. Results Forty-seven cases with 108 synchronous tumors were identified and underwent MT (NGS, n = 23 and non-NGS, n = 24). Histology and MT were concordant, discordant, and indeterminate in 53% (25/47), 21% (10/47), and 26% (12/47) of cases, respectively. CHA of the 10 discordant cases revised results of three cases. Conclusions There is discordance between histology and MT in a subset of cases and MT provides an objective surrogate for staging synchronous tumors. A limited gene panel is sufficient for objectively assessing a relationship if the driver mutations are distinct. Relatedness of mutations require CMR with a larger NGS panel (eg, 50 genes).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 354-354 ◽  
Author(s):  
Ayalew Tefferi ◽  
Terra L. Lasho ◽  
Christy Finke ◽  
Yoseph Elala ◽  
Daniela Barraco ◽  
...  

Abstract Background : Polycythemia Vera (PV) is associated with JAK2 mutations. In essential thrombocythemia (ET), ̴ 85% of patients harbor one of 3 "driver" mutations, with frequencies of ̴ 58%, 23% and 4%, for JAK2, CALR and MPL, respectively; ̴ 15% are wild type for all three mutations and are referred to as "triple negative". We applied next-generation sequencing (NGS) with a 27-gene panel of myeloid malignancy-relevant genes, in order to describe the prevalence of "non-driver" mutations and their prognostic relevance in PV and ET. Methods: Targeted capture assays were carried out on bone marrow or whole blood DNA for the following genes: TET2, DNMT3A, IDH1, IDH2, ASXL1, EZH2, SUZ12, SRSF2, SF3B1, ZRSR2, U2AF1, PTPN11, Tp53, SH2B3, RUNX1, CBL, NRAS, JAK2, CSF3R, FLT3, KIT, CALR, MPL, NPM1, CEBPA, IKZF, and SETBP1.Paired-end indexed libraries were prepared using the NEBNext Ultra Library prep protocol (NEB, Ipswich, MA /Agilent Technologies Inc, Santa Clara, CA). Capture libraries were assembled according to Nimblegen standard library protocol (Roche Nimblegen, Inc, Basel, Switzerland). Base-calling was performed using Illumina's RTA version 1.17.21.3. Genesifter® software (PerkinElmer, Danvers, Massachusetts) was utilized to analyze targeted sequence data. Nucleotide variants were called using the Genome Analysis Toolkit (GATK -Broad Institute, Cambridge, MA). Specific variants were deemed as mutations if they are associated with a hematologic malignancy (COSMIC database), or if they have not been associated with a dbSNP. Results: 314 patients with PV (n =133; median age 64 years, 53% females) or ET (n =181; median age 58 years, 59% females) were evaluated. Median follow-up was 9.8 years for PV and 9.2 years for ET. During this time 59 (44%) deaths, 15 (11%) fibrotic and 5 (4%) leukemic transformations were documented for PV and the corresponding percentages for ET were approximately 33%, 8% and 2%. Driver mutation distribution was 98% JAK2 for PV and 52% JAK2, 24% CALR, 20% triple-negative and 4% MPL for ET. Polycythemia Vera Mutations other than JAK2, CALR or MPL were seen in 58 (44%) patients; 29% harbored one, 14% two and one 3 mutations. None of 3 JAK2 -unmutated cases expressed non-driver mutations. Mutational frequencies were 18% TET2, 11% ASXL1, 5% SH2B3, 3% SF3B1 and ≤2% SETBP1, IDH2, DNMT3A, CEBPA, CSF3R and SUZ12, SRSF2, ZRSR2, TP53, CBL, NRAS, RUNX1, KIT, PTPN11 and FLT3. "Number of mutations" significantly affected overall (OS; Figure 1) and myelofibrosis-free (MFS) survival; respective HR (95% CI) were 2.6 (1.3-5.2) and 1.7 (0.97-3.1) and 13.7 (2.9-63.4) and 5.1 (1.5-17.6) for ≥2 mutations and one mutation, respectively. OS was also adversely affected by SRSF2 (p=0.006) and RUNX1 (p=0.04) and borderline affected by TET2 (p=0.06), IDH2 (p=0.08), ASXL1 (p=0.19) and SF3B1 (p=0.19) mutations. In multivariable analysis, SRSF2 and RUNX1 retained significance whereas the others remained borderline significant. In both univariate and multivariable analyses, leukemia-free survival (LFS) was adversely affected by IDH2 and RUNX1 mutations. In univariate analysis, ASXL1, IDH2, RUNX1 and KIT mutations predicted fibrotic progression, whereas SETBP1 was of borderline significance (p=0.07); all, including SETBP1, were significant during multivariable analysis. Essential thrombocythemia Mutations other than JAK2, CALR or MPL were seen in 83 (46%) patients; 35% harbored one, 7% two and 4% three mutations; prevalence in JAK2, CALR, MPL mutated and triple-negative cases was 52%, 43%, 43% and 35%, respectively (p=0.52). Mutational frequencies were: 13% TET2, 11% ASXL1, 6% DNMT3A, 5% SF3B1, 4% CEBPA, 2% TP53, SH2B3, EZH2 and CSF3R and <2% for SETBP1, IDH2, SRSF2, ZRSR2, CBL, NRAS, RUNX1, U2AF1, KIT, PTPN11 and FLT3. "Number of mutations" significantly affected OS (Figure 2) but not MFS or LFS; HR (95% CI) for OS were 6.6 (2.5-17.8) for 3 mutations and 2.2 (1.3-3.9) for one or two mutations. In univariate analysis, survival was adversely affected by CBL, EZH2, SF3B1, SRSF2 and IDH2 mutations. In multivariable analysis, EZH2 and SF3B1 remained significant. Univariate analysis identified SETBP1 and SF3B1 mutations as risk factors for fibrotic progression and EZH2, TP53 and CSF3R mutations for leukemic transformation. Conclusions: "Non-driver" mutations occur in more than 40% of patients with PV or ET; the number of such mutations and presence of certain specific ones likely predict OS, MFS or LFS. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Pardanani: Stemline: Research Funding.


2016 ◽  
Vol 209 (4) ◽  
pp. 154-160 ◽  
Author(s):  
Carola Andersson ◽  
Henrik Fagman ◽  
Magnus Hansson ◽  
Fredrik Enlund

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5750
Author(s):  
Arnaud Bayle ◽  
Debora Basile ◽  
Simon Garinet ◽  
Bastien Rance ◽  
Pierre Laurent-Puig ◽  
...  

In digestive oncology, the clinical impact of targeted next-generation sequencing (NGS) in routine practice should be addressed. In this work, we studied the impact of a 22-gene NGS amplicon-based panel with Ion Torrent Proton Sequencing, prospectively performed in routine practice. We analyzed the results of extended molecular testing, beyond RAS and BRAF, in metastatic colorectal cancer (mCRC) patients in a single-center, retrospective, observational study of consecutive mCRC patients followed up at the Georges Pompidou European Hospital between January 2016 and December 2018. Overall, 210 patients with mCRC were included. Median follow-up was 25.4 months (IQR: 14.9–39.5). The three most frequently mutated genes were: TP53 (63%), KRAS (41%) and PIK3CA (19%). A positive association was found between overall survival and performance status (PS) ≥ 2 (HR: 4.91 (1.84–13.1); p = 0.001) and differentiation (HR: 4.70 (1.51–14.6); p = 0.007) in multivariate analysis. The NGS panel enabled five patients to access a targeted therapy not currently registered for CRC. In conclusion, targeted NGS panels in mCRC are feasible in routine practice, but need to be regularly updated and in-depth studies are needed to better analyze the prognostic factors.


Sign in / Sign up

Export Citation Format

Share Document