scholarly journals Small molecule AZD4635 inhibitor of A2AR signaling rescues immune cell function including CD103+ dendritic cells enhancing anti-tumor immunity

2020 ◽  
Vol 8 (2) ◽  
pp. e000417 ◽  
Author(s):  
Alexandra Borodovsky ◽  
Christine M Barbon ◽  
Yanjun Wang ◽  
Minwei Ye ◽  
Laura Prickett ◽  
...  

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated.MethodsWe report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition.ResultsWe provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies.ConclusionWe provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.

Author(s):  
Robiya Joseph ◽  
Rama Soundararajan ◽  
Suhas Vasaikar ◽  
Fei Yang ◽  
Kendra L. Allton ◽  
...  

Abstract Background The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. Methods We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. Results We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. Conclusions CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


2018 ◽  
Vol 9 ◽  
Author(s):  
Jérémie Rossy ◽  
Julia M. Laufer ◽  
Daniel F. Legler
Keyword(s):  
T Cell ◽  

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2940
Author(s):  
Federica Marchesi ◽  
Debora Vignali ◽  
Beatrice Manini ◽  
Alessandra Rigamonti ◽  
Paolo Monti

The orchestration of T cell responses is intimately linked to the execution of metabolic processes, both in homeostasis and disease. In cancer tissues, metabolic alterations that characterize malignant transformation profoundly affect the composition of the immune microenvironment and the accomplishment of an effective anti-tumor response. The growing understanding of the metabolic regulation of immune cell function has shed light on the possibility to manipulate metabolic pathways as a strategy to improve T cell function in cancer. Among others, glucose metabolism through the glycolytic pathway is central in shaping T cell responses and emerges as an ideal target to improve cancer immunotherapy. However, metabolic manipulation requires a deep level of control over side-effects and development of biomarkers of response. Here, we summarize the metabolic control of T cell function and focus on the implications of metabolic manipulation for the design of immunotherapeutic strategies. Integrating our understanding of T cell function and metabolism will hopefully foster the forthcoming development of more effective immunotherapeutic strategies.


2016 ◽  
Author(s):  
Fella Tamzalit ◽  
Ariella Kepecs ◽  
Hisham Bazzi ◽  
Kathryn Anderson ◽  
Morgan Huse

2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


2017 ◽  
Vol 200 (2) ◽  
pp. 483-499 ◽  
Author(s):  
Fany M. Iseka ◽  
Benjamin T. Goetz ◽  
Insha Mushtaq ◽  
Wei An ◽  
Luke R. Cypher ◽  
...  

2003 ◽  
Vol 197 (7) ◽  
pp. 861-874 ◽  
Author(s):  
Ye Zheng ◽  
Monika Vig ◽  
Jesse Lyons ◽  
Luk Van Parijs ◽  
Amer A. Beg

Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-κB pathway in regulating mature T cell function by using CD4+ T cells from p50−/− cRel−/− mice, which exhibit virtually no inducible κB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-κB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-κB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-κB–inducing IκB kinase β showed that NF-κB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-κB in both IL-2 and Akt-induced survival pathways. In vivo, p50−/− cRel−/− mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-κB proteins in regulating T cell function in vivo and establish a critically important function of NF-κB in TCR-induced regulation of survival.


Sign in / Sign up

Export Citation Format

Share Document