scholarly journals 688 In vivo expansion of gamma delta T cells by a CD19-targeted butyrophilin heterodimer leads to elimination of peripheral B cells

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A727-A727
Author(s):  
Suresh De Silva ◽  
George Fromm ◽  
Louis Gonzalez ◽  
Arpita Patel ◽  
Kyung Yoon ◽  
...  

BackgroundA primary mechanism of cancer immunotherapy resistance involves downregulation of specific antigens or major histocompatibility complex based antigen presentation, which renders tumor cells invisible to alpha-beta T cells, but not gamma-delta T cells. Recently, a two-step model of gamma-delta T cell activation has emerged, wherein one butyrophilin (BTN, ie. BTN2A1) directly binds the gamma-delta TCR but is only activated if certain molecular patterns (eg. phosphoantigens) facilitate recruitment of a second BTN (ie. BTN3A1) into a complex to form a BTN2A1/3A1 heterodimer. The BTN2A1/3A1 complex specifically activates the predominant gamma-delta T cell population in the peripheral blood, comprising the Vg9d2 T cell receptor (TCR), but does not activate the primary gamma-delta T cell population in mucosal tissues, comprising the Vg4 TCR. The unique mechanism of action and specificity of gamma-delta TCR/BTN interactions suggests that therapeutic proteins comprising specific BTN heterodimers could be used to target specific gamma-delta T cell populations, with a lower risk of off-target activation common with CD3-directed T cell engagers.MethodsHuman BTN2A1/3A1-Fc-CD19scFv and mouse BTNL1/6-Fc-CD19scFv heterodimeric fusion proteins were purified and binding to CD19 or the respective gamma-delta TCRs was assessed by ELISA, Octet and flow cytometry using gd T-cells isolated from human peripheral blood and mouse intestinal tissue. The functionality of the constructs to activate gamma-delta T cells and mediate killing of tumor cells was assessed using live cell imaging in vitro as well as a murine B-cell lymphoma model in vivo.ResultsThe CD19-targeting scFv domains of the BTN heterodimer fusion proteins bound to human and mouse CD19 with low nanomolar affinity. The BTN2A1/3A1-Fc-CD19scFv compound specifically bound to the Vg9d2 TCR on human gd T cells while the mouse BTNL1/6-Fc-CD19scFv bound to Vg7d4 TCR on mouse gd T cells. Both compounds were able to activate gd T cells in a co-culture assay resulting in degranulation and increased surface expression of CD107a and also increased apoptosis of CD19+ tumor cells. Intraperitoneal administration of the mouse BTNL1/6-Fc-CD19scFv led to anti-tumor effects in A20 tumor bearing BALB/c mice. Phenotyping from BTNL1/6-Fc-CD19scFv treated mice revealed profound and rapid expansion of the endogenous gamma-delta T cells in the circulation and tumor, with concomitant depletion of peripheral CD19+ B-cells, confirming the mechanism of action of the heterodimer as a gamma-delta T cell specific engager.ConclusionsThese results provide proof of mechanism for in vivo manipulation of gamma-delta T cells using antigen-targeted butyrophilin heterodimeric fusion proteins for the treatment of cancer.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi168-vi168
Author(s):  
Amber Jones ◽  
Kate Rochlin ◽  
Lawrence Lamb ◽  
Anita Hjelmeland

Abstract Glioblastoma (GBM) is an aggressive cancer that has been largely intractable to novel therapies, however, enhancing the efficacy of immunotherapy could potentially overcome immunosuppression and potentially improve patient outcomes. The cellular stress induced by Temozolomide (TMZ) increases innate immune ligands, which could be exploited to promote immune recognition. TMZ-induced DNA damage can activate the stress response pathway, increasing the expression of NKG2D ligands (NKG2DL) on tumor cells. This leads to an increase in NKG2DL recognition by NKG2D receptors on both natural killer and cytotoxic T-cells to elicit a cytotoxic effect. The lymphodepleting effect of TMZ, however, can limit the ability of these cells to recognize and kill tumor cells. TMZ was shown to induce NKG2DL in gliomas both in vitro and in vivo, providing the basis for clinical trials of TMZ in combination with genetically engineered TMZ-resistant gamma delta T-cells (NCT04165941). To further promote immune recognition, we sought to augment the TMZ-induced stress response by exploring the combination of DNA alkylation with either PARP (Niraparib) or ATM Kinase inhibition (AZD1390). Combinatorial therapy significantly, but heterogeneously, increased differential subsets of NKG2DL genes in comparison to TMZ alone in GBM cells isolated from patient derived xenografts (PDX): 1) MICA and MICB were increased at least 10-fold in D456 (proneural) cells; 2) ULBP1 and ULBP2 were increased at least 2-fold in JX39 (classical) cells; and 3) minimal increases in NKG2DLs were observed in JX22 (mesenchymal) cells. Repression of NKG2DLs by hypoxia/low glucose was also heterogeneous, being observed in two of three GBM models tested. We are currently determining whether these combinatorial treatments improve gamma delta T-cell cytotoxicity against GBM cells and in vivo tumor models. Taken together, our data suggest that enhancing cell stress responses induced by chemotherapies may permit novel immunotherapy therapeutic interventions for brain tumor patients.


1993 ◽  
Vol 177 (2) ◽  
pp. 425-432 ◽  
Author(s):  
K W Wucherpfennig ◽  
Y J Liao ◽  
M Prendergast ◽  
J Prendergast ◽  
D A Hafler ◽  
...  

Substantial numbers of both alpha/beta and gamma/delta T cells are present in human fetal liver, which suggests a role of the fetal liver in T cell development. The diversity of fetal liver T cell receptor (TCR) gamma and delta chain rearrangements was examined among both CD4+CD8- and CD4-CD8- gamma/delta T cell clones. In addition, TCR delta chain transcripts from three fetal livers were sequenced after polymerase chain reaction amplification of TCR delta chains with V delta 1 or V delta 2 rearrangements. Five of six fetal liver gamma/delta T cell clones had a V delta 2-D delta 3-J delta 3 gene rearrangement with limited junctional diversity; three of these clones had an unusual CD4+CD8- phenotype. V delta 2-D delta 3-J delta 3 gene rearrangements were also common among both in-frame and out-of-frame transcripts from three fetal livers, indicating that they are the result of an ordered rearrangement process. TCR gamma chain sequences of the fetal liver gamma/delta T cell clones revealed V gamma 1-J gamma 2.3, V gamma 2-J gamma 1.2, and V gamma 3-J gamma 1.1 rearrangements with minimal incorporation of template-independent N region nucleotides. TCR gamma chain rearrangements found in these fetal liver T cell clones were different from those that have been observed among early thymic gamma/delta T cell populations, while similar TCR delta chain rearrangements are found among gamma/delta T cells from both sites. These data demonstrate that the fetal liver harbors gamma/delta T cell populations distinct from those found in the fetal thymus, suggesting that the fetal liver is a site of gamma/delta T cell development in humans. These unusual T cell populations may serve a specific function in the fetal immune system.


1993 ◽  
Vol 178 (3) ◽  
pp. 985-996 ◽  
Author(s):  
M J Skeen ◽  
H K Ziegler

Peritoneal gamma/delta T cells from Listeria-immune mice show an enhanced potential to expand when restimulated with antigens or mitogens in vitro (see companion paper [Skeen, M. J., and H. K. Ziegler. 1993. J. Exp. Med. 178:971]). When cocultured with peritoneal alpha/beta T cells, the gamma/delta T cell population expanded preferentially even when the in vitro stimulus was specific for the alpha/beta T cell population. Purified gamma/delta T cells did not respond to alpha/beta T cell-specific stimuli. If isolated T cell subsets were recombined in cell mixing experiments, the resulting proliferative response was greater than additive. Irradiated alpha/beta T cells could enhance the proliferation of responding gamma/delta T cells, but the effect was unidirectional; i.e., irradiated gamma/delta T cells did not stimulate responding gamma/delta T cells. This effect appeared to be cytokine mediated and did not require cell-cell contact. Both recombinant interleukin 2 (rIL-2) and rIL-7 could support the expansion of the gamma/delta T cells, while rIL-7 was only minimally stimulatory for the alpha/beta T cells. The magnitude of the response by gamma/delta T cells to rIL-7 exceeded the response to other in vitro stimuli, including immobilized anti-T cell receptor monoclonal antibody, and was 50-100-fold greater than the alpha/beta T cell response to IL-7. This unique sensitivity of gamma/delta T cells to IL-7 was strongly enhanced by the presence of accessory cells. These cells could be replaced by rIL-1, establishing a synergy for IL-1 and IL-7 as factors that could uniquely stimulate this gamma/delta T cell population. Isolated peritoneal gamma/delta T cells from Listeria-immune mice react to heat-killed Listeria preparations in the presence of macrophages accessory cells in a non-H-2-restricted manner. Considered collectively, these results suggest a potential mechanism by which gamma/delta T cells can predominate in epithelial tissues and at sites of infection.


1993 ◽  
Vol 178 (3) ◽  
pp. 971-984 ◽  
Author(s):  
M J Skeen ◽  
H K Ziegler

Previous studies have reported an association of gamma/delta T cells with microbial infection in both human lesions and murine infectious disease models. In this study we provide a comprehensive analysis of the conditions under which the induction of gamma/delta T cells occurs at a site of infection. We found a site-specific induction of gamma/delta T cells after the injection of Listeria monocytogenes in the peritoneal cavity of C3H mice. No changes were seen in the splenic or lymph node populations after these injections. Both the proportion and the absolute number of gamma/delta T cells increased in the peritoneal cavity. Additionally, when peritoneal T cells from Listeria-immune mice were restimulated in vitro, the induced gamma/delta T cells exhibited a greater expansion potential than the alpha/beta T cells. Neither the induced gamma/delta T cells nor those from normal mice expressed CD4 or CD8 on the cell surface. Thy-1 was expressed on only 29% of normal peritoneal gamma/delta T cells, but after intraperitoneal Listeria injection 65% of induced gamma/delta T cells expressed. Thy-1, Pgp-1 and CD45R expression on both normal and induced gamma/delta T cells was consistent with an activation phenotype. Significant increases in peritoneal gamma/delta T cells were not seen until 5-7 d after Listeria injection. The proportion of the CD3+ population expressing the gamma/delta T cell receptor remained elevated for 6-7 wk, while the absolute numbers of peritoneal gamma/delta T cells declined gradually over this time period, reflecting a decrease in both the number of lymphocytes and the percentage of these that were CD3+. Peak numbers of gamma/delta T cells were seen at day 10 with live microbes such as Listeria. A variety of microbes, toxins, mitogens, antigens, cytokines, and nonspecific inflammatory agents were evaluated for their ability to induce gamma/delta T cells in the peritoneal cavity. Both Gram-positive and Gram-negative bacteria as well as Mycobacteria were able to induce gamma/delta T cells that showed increased in vitro expansion potential. An exotoxin from a Gram-positive organism, listeriolysin-o, and the lipopolysaccharide (LPS) endotoxin from a Gram-negative organism were also effective. gamma/delta T cell responses to LPS were under lps gene control. Peak numbers of gamma/delta T cells were observed at day 3 after injection with exotoxins and endotoxins. Modifications that abrogated the virulence of a bacterial strain also eliminated the inductive effect for gamma/delta T cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 296 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Janice C. Telfer ◽  
Cynthia L. Baldwin

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1427-1427
Author(s):  
Suzanne L Tomchuck ◽  
Jin He ◽  
Ross W. Perko ◽  
Scarlett Evans ◽  
Amy McKenna ◽  
...  

Abstract Cord blood (CB) T cells are known to be naïve cells, but can be activated to respond similar to adult peripheral blood (PB) T cells. Reports indicate that culture with aminobisphosphonate (NBP) stimulates CB gamma delta T cell proliferation ex vivo, specifically the TCRγ9δ2 subset, which has been extensively studied in PB gamma delta T cells. As CB gamma delta T cells are not well described, we compared CB gamma delta T cell proliferation, phenotype and genotype to PB gamma delta T cells when culturing cells with the NBP, Zometa (zoledronic acid), and IL-2. Fourteen days in culture resulted in significant fold increase in the proliferation of gamma delta T cells and in the percent of lymphocytes in both sample types. PB gamma delta T cells proliferated more robustly than CB with a 288.60 versus 21.32 fold increase, respectively. Additionally, in freshly isolated samples, CB gamma delta T cells comprised an average of 1.404% of the lymphocyte population, which was similar to PB gamma delta T cells, with an average of 2.319%. However, by day 14, PB gamma delta T cells increased to 70.15% of lymphocytes whereas CB gamma delta T cells increased to 12.49%. Phenotypically, both CB and PB had similar percent of CD45RA+ and CD45RO+ gamma delta T cell memory subsets in freshly isolated samples. Following culture, PB gamma delta T cells were mostly CD45RO+ memory cells, with significantly fewer CD45RA+ naïve cells, whereas more CB gamma delta T cells were of the intermediate CD45RA+CD45RO+ subset. Further phenotypic analysis of the memory subsets indicated that cultured PB gamma delta T cells were either effector memory cells (CD27-CD45RA-) or central memory cells (CD27+CD45RA-), while CB gamma delta T cells were mostly naïve (CD27+CD45RA+). The cytokines secreted by these cells were also assessed and the culture of PB and CB gamma delta T cells resulted in differing cytokine secretion profiles. After 14 days of culture, PB gamma delta T cells secreted more IFNγ and TNFα, while CB gamma delta T cells secreted more IL-10 and RANTES. We also examined TCRγ9 and TCRδ2 phenotypic expression and found that the TCRγ9δ2 was a common clone in freshly isolated PB gamma delta T cells, which predominated after 14 days in culture. However, while the TCRγ9δ2 variant was expressed in CB gamma delta T cells, it was low before and after culture, suggesting that Zometa may not stimulate gamma delta T cells in CB the same as PB. As limited TCRγδ phenotypic reagents are available, we developed a single cell PCR assay for genotypic analysis of the TCRγδ repertoire. PCR analysis suggests that the TCRγδ repertoire is diverse in both samples, yet TCRγ9δ2 is most prevalent. Further analysis of the variant subsets is warranted and may give insight into how each of these receptor pairings affects function. Disclosures No relevant conflicts of interest to declare.


1990 ◽  
Vol 172 (6) ◽  
pp. 1877-1880 ◽  
Author(s):  
M Nakata ◽  
M J Smyth ◽  
Y Norihisa ◽  
A Kawasaki ◽  
Y Shinkai ◽  
...  

The cytotoxic activity and pore-forming protein (PFP) expression of human peripheral blood (PB) gamma/delta T cells were examined. Fresh gamma/delta T cells isolated from PB lymphocytes by fluorescence-activated cell sorting exhibited a substantial natural killer-like cytotoxic activity against K562 target cells and had a high cytotoxic potential triggered by anti-CD3 monoclonal antibody (mAb) against P815 target cells bearing Fc gamma R. Immunocytochemical staining with an anti-PFP mAb revealed that virtually all PB gamma/delta T cells are granular lymphocytes with abundant PFP in their cytoplasmic granules. Constitutive expression of PFP in PB gamma/delta T cells was also demonstrated by Northern blot analysis. These observations support the proposed role of gamma/delta T cells in cytolytic immune surveillance in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3893-3893
Author(s):  
Francesca Fiore ◽  
Barbara Castella ◽  
Barbara Nuschak ◽  
Raffaello Bertieri ◽  
Sara Mariani ◽  
...  

Abstract Vgamma9/Vdelta2 (gamma/delta) T cells represent the major subset of unconventional T cells circulating in the peripheral blood. Gamma/delta T cells play a major role in immune defenses against microbes, stressed cells and tumor cells. This property is based on their capability to naturally recognize phosphoantigens (pAgs), which are produced via the mevalonate (Mev) or the DOXP pathway in mammalian and nonmammalian cells, and induced self-ligands, which are de novo expressed or upregulated on the surface of stressed or tumor cells. Interestingly, gamma/delta T cells can also be activated by aminobisphosphonates (ABP)-treated monocytes. We have previously shown that ABP specifically target the Mev pathway of monocytes and induce the accumulation of phosphorylated Mev metabolites naturally recognized by gamma/delta T cells. The aim of this work was to determine whether ABP-treated dendritic cells (DC) can also activate gamma/delta T cells and whether this activation, if any, is detrimental or beneficial to the generation of antigen (Ag)-specific MHC-restricted immune responses mediated by conventional alpha/beta T cells. To this end, we have generated highly purified immature (iDC) and mature DC (mDC) from peripheral blood monocytes of healthy donors and incubated with zoledronic acid (Zol) for 24 hours. Zol is the most potent ABP currently available for clinical use. Zol treatment did not affect the phenotype and immunostimulatory properties of iDC and mDC. Zol-treated iDC and mDC induced a rapid and vigorous expansion of central memory and effector memory gamma/delta T cells. Zol-treated iDC were more potent inducers of gamma/delta T-cell activation than mDC and monocytes. Activated gamma/delta T cells displayed antitumor activity and expressed on the cell surface the appropriate antigen repertoire to target secondary lymphoid organs and exert costimulatory activity on conventional alpha/beta T cells. Indeed, an in vitro model showed that antigen-specific MHC-restricted immune responses againt the influenza matrix peptide were significantly improved by the concurrent activation of gamma/delta T cells. This is the first report showing that: 1) DC can simultaneously be primed to activate both gamma/delta and alpha/beta T cells; 2) the former act as cellular adjuvants for the development of adaptive immune responses. In conclusion, large numbers of gamma/delta T cells with effector and costimulatory activities can rapidly be generated by Zol-treated iDC/mDC. This strategy is worth of further investigation to improve adoptive cell therapy and vaccine interventions against tumors and infections.


1995 ◽  
Vol 182 (6) ◽  
pp. 1921-1930 ◽  
Author(s):  
P Pereira ◽  
D Gerber ◽  
S Y Huang ◽  
S Tonegawa

A hamster monoclonal antibody (mAb) recognizing an epitope in the V gamma 1-J gamma 4-C gamma 4 chain of the gamma/delta T cell receptor has been generated. Using this mAb, we have quantitated the occurrence of V gamma 1-bearing gamma/delta T cells in the developing thymus and in the lymphoid organs and several epithelia of adult mice. The V gamma 1-expressing cells constitute a minor gamma/delta T cell subpopulation during fetal and early postnatal life, but they constitute a major population of gamma/delta T cells in the thymus and in the peripheral lymphoid organs in adult mice. In addition, we found that V gamma 1-bearing cells comprise a large proportion (15-60%) of the gamma/delta T cells present in the intestinal epithelium (i-IEL) in all strains of mice tested. V gamma 1+ i-IEL are present in athymic (nude) mice and in antigen-free mice, demonstrating that they can develop extrathymically and that their presence in the intestinal epithelium is independent of the antigenic load of the gut. Our results show that V gamma 1-bearing lymphocytes account for the largest population of gamma/delta T cells in the mouse. This population includes a thymus-dependent component that homes to the secondary lymphoid organs and a thymus-independent component that constitutes a major fraction of the gamma/delta i-IELs.


Sign in / Sign up

Export Citation Format

Share Document