755 CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A803-A803 ◽  
Author(s):  
Alvaro Teijeira ◽  
Saray Garasa ◽  
Itziar Migueliz ◽  
Assunta Cirella ◽  
Ignacio Melero

BackgroundNeutrophils are expanded and abundant in an important fraction (up to 35% of patients) in cancer-bearing hosts. When neutrophils are expanded, they usually promote exert immunomodulatory functions promoting tumor progression and the generation of metastases. Neutrophils can undergo a specialized form of cell death called NETosis that is characterized by the extrusion of their DNA to contain infections. In cancer NETs have been described to promote metastases in mouse models. IL-8, a CXCR1/2 ligand clinically targeted by blocking antibodies, has been described to induce NETosis and is upregulated in many cancer patients. Our hypothesis is that chemokines secreted by cancer cells can mediate NETosis in tumor associated neutrophils and that NETs can be one of the immunomodulatory mechanisms provided by tumor associated neutrophils.MethodsNETosis induction of peripheral neutrophils and granulocytic myeloid derived suppressor cells by different chemotactic stimuli, tumor cell supernatants and cocultures upon CXCR1/2 blockade. NET immunodetection in mouse models and xenograft tumors upon CXCR1/2 blockade. In vitro tumor cytotoxicity assays in the presence/absence of NETs, and videomicroscopy studies in vitro and by intravital imaging to test NETs inhibition of immune cytotoxicity by immune-cell/target-cell inhibition. Tumor growth studies and metastases models in the presence of NETosis inhibitors and in combination with checkpoint blockade in mouse cancer models.ResultsUnder the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.ConclusionsCXCR1 and 2 are the main receptors mediating NETosis of tumor associated neutrophils in our in-vitro and in vivo systems expressing high levels of CXCR1 and 2 ligands. NETs limit cancer cell cytotoxicity by impeding contacts with cancer cells.

2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 126-126
Author(s):  
Jaspreet Singh Grewal ◽  
Numan Al-Rayyan ◽  
Jamaal Ritchie ◽  
Paxton Schowe ◽  
Cam Falkner ◽  
...  

126 Background: Myeloid derived suppressor cells (MDSCs) inhibit the expansion of tumor antigen-specific effector CD8+ T cells via different mechanisms including increased expression of arginase, transforming growth factor – β (TGF – β) and indoleamine 2,3-dioxygenase (IDO). Recently, MDSCs were found to over-express hypoxia inducible factor 1 alpha (HIF-1α) which is required for their differentiation. An essential transcriptional target of HIF-1α is 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) which synthesizes fructose 2,6-bisphosphate, an allosteric stimulator of glycolysis and of proliferation via stimulation of cyclin dependent kinase-1 (CDK1). We hypothesized that MDSCs might over-express PFKFB3 which in turn might be required for their function as T cell suppressors. Methods: We used monocytic MDSCs (M-MDSCs) induced by co-culture with A375 melanoma cells, M-MDSCs from metastatic melanoma patients, murine bone marrow MDSCs and splenic M-MDSCs from B16 F10 tumor bearing mice for our studies. T cell suppression assays were performed to analyze M-MDSC suppression and reversal following PFKFB3 blockade. Results: We found that M-MDSCs have increased PFKFB3 expression. We also found that PFK-158 administration in B16 (wild-type) melanoma-bearing mice results in a marked reduction in MDSCs and a simultaneous increase in CD8+ T cell infiltration in the tumors. We analyzed three advanced cancer patients for circulating MDSCs before and after PFK-158 administration as part of a multi-center phase 1 clinical trial. And, we found that the MDSCs were markedly reduced in each patient. In addition, we have generated data for MDSC suppressive activity following in vitro treatment with PFK-158 showing reversal of suppressive activity. Conclusions: Taken together, these data indicate that selective inhibition of PFKFB3 may be a novel approach to target MDSCs and combinations of PFKFB3 inhibitors with immunotherapies may be a rational strategy to promote durable immune-mediated remissions in cancer patients.


2020 ◽  
Author(s):  
Junho Lee ◽  
Donggu Lee ◽  
Sean Lawler ◽  
Yangjin Kim

AbstractLung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.Author summaryWhen cancer patients are diagnosed with tumours at a primary site, the cancer cells are often found in the blood or already metastasized to the secondary sites in other organs. These metastatic cancer cells are more resistant to major anti-cancer therapies, and lead to the low survival probability. Until recently, the role of neutrophils, specifically tumor-associated neutrophils as a member of complex tumor microenvironment, has been ignored for a long time due to technical difficulties in tumor biology but these neutrophils are emerging as an important player in regulation of tumor invasion and metastasis. The mutual interaction between a tumor and neutrophils from bone marrow or in blood induces the critical transition of the naive form, called the N1 type, to the more aggressive phenotype, called the N2 TANs, which then promotes tumor invasion. In this article, we investigate how stimulated neutrophils with different N1 and N2 landscapes shape the metastatic potential of the lung cancers. Our simulation framework is designed for boyden invasion chamber in experiments and based on a mathematical model that describes how tumor cells interact with neutrophils and N2 TANs can promote tumor cell invasion. We demonstrate that the efficacy of anti-tumor (anti-invasion) drugs depend on this critical communication and N1 → N2 landscapes of stimulated neutrophils.


2008 ◽  
Vol 57 (10) ◽  
pp. 1493-1504 ◽  
Author(s):  
Minu K. Srivastava ◽  
Jacobus J. Bosch ◽  
James A. Thompson ◽  
Bruce R. Ksander ◽  
Martin J. Edelman ◽  
...  

2016 ◽  
Vol 22 (15) ◽  
pp. 3924-3936 ◽  
Author(s):  
Carlos Alfaro ◽  
Alvaro Teijeira ◽  
Carmen Oñate ◽  
Guiomar Pérez ◽  
Miguel F. Sanmamed ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 1935557
Author(s):  
Glenn F. Van Wigcheren ◽  
Nienke De Haas ◽  
Tom A. Mulder ◽  
Sophie K. Horrevorts ◽  
Martine Bloemendal ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Ondracek ◽  
T.M Hofbauer ◽  
A Mangold ◽  
T Scherz ◽  
V Seidl ◽  
...  

Abstract Introduction Leukocyte-mediated inflammation is crucial in acute myocardial infarction (AMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in AMI. Methods Culprit site and femoral blood of AMI patients was drawn during percutaneous coronary intervention. We characterized CCR2 expression of fibrocytes by flow cytometry. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA. Fibrocytes were treated in vitro with MCP-1. Human coronary arterial endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 was measured by ELISA and qPCR. The influence of MCP-1 on NET formation in vitro was assessed using isolated neutrophils. Results We have included 50 consecutive AMI patients into the study. NETs and concentrations of MCP-1 were increased at the CLS. NET stimulation of hCAECs induced MCP-1 on mRNA and protein level. Increasing MCP-1 gradient was associated with fibrocyte accumulation at the site of occlusion. In the presence of higher MCP-1 these fibrocytes expressed proportionally less CCR2 than peripheral fibrocytes. In vitro, MCP-1 dose-dependently decreased fibrocyte CCR2 and reduced ex vivo NET release of healthy donor neutrophils. Conclusions NETs induce endothelial MCP-1 release, presumably promoting a chemotactic gradient for leukocyte and fibrocyte migration. MCP-1 mediated inhibition of NET formation could point to a negative feedback loop. These data will shed light on vascular healing. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Austrian Science Fund


Sign in / Sign up

Export Citation Format

Share Document