scholarly journals Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural Insights from a Computational Model

2020 ◽  
Author(s):  
Junho Lee ◽  
Donggu Lee ◽  
Sean Lawler ◽  
Yangjin Kim

AbstractLung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.Author summaryWhen cancer patients are diagnosed with tumours at a primary site, the cancer cells are often found in the blood or already metastasized to the secondary sites in other organs. These metastatic cancer cells are more resistant to major anti-cancer therapies, and lead to the low survival probability. Until recently, the role of neutrophils, specifically tumor-associated neutrophils as a member of complex tumor microenvironment, has been ignored for a long time due to technical difficulties in tumor biology but these neutrophils are emerging as an important player in regulation of tumor invasion and metastasis. The mutual interaction between a tumor and neutrophils from bone marrow or in blood induces the critical transition of the naive form, called the N1 type, to the more aggressive phenotype, called the N2 TANs, which then promotes tumor invasion. In this article, we investigate how stimulated neutrophils with different N1 and N2 landscapes shape the metastatic potential of the lung cancers. Our simulation framework is designed for boyden invasion chamber in experiments and based on a mathematical model that describes how tumor cells interact with neutrophils and N2 TANs can promote tumor cell invasion. We demonstrate that the efficacy of anti-tumor (anti-invasion) drugs depend on this critical communication and N1 → N2 landscapes of stimulated neutrophils.

2021 ◽  
Vol 17 (2) ◽  
pp. e1008257
Author(s):  
Junho Lee ◽  
Donggu Lee ◽  
Sean Lawler ◽  
Yangjin Kim

Lung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A803-A803 ◽  
Author(s):  
Alvaro Teijeira ◽  
Saray Garasa ◽  
Itziar Migueliz ◽  
Assunta Cirella ◽  
Ignacio Melero

BackgroundNeutrophils are expanded and abundant in an important fraction (up to 35% of patients) in cancer-bearing hosts. When neutrophils are expanded, they usually promote exert immunomodulatory functions promoting tumor progression and the generation of metastases. Neutrophils can undergo a specialized form of cell death called NETosis that is characterized by the extrusion of their DNA to contain infections. In cancer NETs have been described to promote metastases in mouse models. IL-8, a CXCR1/2 ligand clinically targeted by blocking antibodies, has been described to induce NETosis and is upregulated in many cancer patients. Our hypothesis is that chemokines secreted by cancer cells can mediate NETosis in tumor associated neutrophils and that NETs can be one of the immunomodulatory mechanisms provided by tumor associated neutrophils.MethodsNETosis induction of peripheral neutrophils and granulocytic myeloid derived suppressor cells by different chemotactic stimuli, tumor cell supernatants and cocultures upon CXCR1/2 blockade. NET immunodetection in mouse models and xenograft tumors upon CXCR1/2 blockade. In vitro tumor cytotoxicity assays in the presence/absence of NETs, and videomicroscopy studies in vitro and by intravital imaging to test NETs inhibition of immune cytotoxicity by immune-cell/target-cell inhibition. Tumor growth studies and metastases models in the presence of NETosis inhibitors and in combination with checkpoint blockade in mouse cancer models.ResultsUnder the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.ConclusionsCXCR1 and 2 are the main receptors mediating NETosis of tumor associated neutrophils in our in-vitro and in vivo systems expressing high levels of CXCR1 and 2 ligands. NETs limit cancer cell cytotoxicity by impeding contacts with cancer cells.


2015 ◽  
Vol 34 (6) ◽  
pp. 2821-2826 ◽  
Author(s):  
NIANSHUANG LI ◽  
DEQIANG HUANG ◽  
NONGHUA LU ◽  
LINGYU LUO

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5885
Author(s):  
Yu-Kuan Huang ◽  
Rita A. Busuttil ◽  
Alex Boussioutas

Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.


2020 ◽  
Vol 28 (3) ◽  
pp. 399-405
Author(s):  
Fabrizio Fontana ◽  
Olga A. Babenko

Aim of this letter is to attract the attention of journal readers to the study of exosomes as an important direction in the development of Oncology, in particular, in the diagnosis and treatment of prostate cancer. Exosomes are produced by tumor cells and regulate proliferation, metastasis, and the development of chemoresistance. Their extraction from biological fluids allows further use of these vesicles as potential biomarkers of prostate cancer. In the future, exosomes can be successfully used in the delivery of drugs and other anti-tumor substances to cancer cells.


2020 ◽  
Vol 15 (7) ◽  
pp. 607-613 ◽  
Author(s):  
Haiping Liu ◽  
Yiqian Liu ◽  
Xiaochuan Zhang ◽  
Xiaodong Wang

Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5‐year survival rate of early GC reaches 90%‐95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oleg Shuvalov ◽  
Alyona Kizenko ◽  
Alexey Petukhov ◽  
Olga Fedorova ◽  
Alexandra Daks ◽  
...  

AbstractCancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male’s reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eui Jung Moon ◽  
Stephano S. Mello ◽  
Caiyun G. Li ◽  
Jen-Tsan Chi ◽  
Kaushik Thakkar ◽  
...  

AbstractHypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document