scholarly journals 881 Enhanced antibody-mediated phagocytosis and antibody-mediated cell cytotoxicity using tetravalent, bispecific innate cell engagers (ICE®) in 3D spheroids

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A923-A923
Author(s):  
Sheena Pinto ◽  
Savannah Jackson ◽  
Julia Knoch ◽  
Christian Breunig ◽  
Arndt Schottelius ◽  
...  

BackgroundThe redirected optimized cell platform (ROCK®) enables the generation of customizable innate cell engagers (ICE®) of varying valency, affinity, and pharmacokinetic profiles. Preclinical and clinical studies have demonstrated the advantage and unique features of this first-in-class ICE® antibodies across a multitude of cancers and its differentiation to monoclonal antibodies. ICE® are tetravalent, bispecific antibodies that bivalently bind to a unique epitope on CD16A, which is selectively expressed on natural killer (NK) cells and macrophages, while the other domains target a tumor antigen. In addition to promoting antibody-dependent cellular cytotoxicity (ADCC) of NK cells, ICE® can also promote tumor targeting of macrophages eventually inducing antibody-dependent cellular phagocytosis (ADCP).MethodsADCP and ADCC assays were performed using monocyte-differentiated macrophages and NK cells derived from healthy donor PBMCs. Target tumor lines and patient-derived xenograft line-derived spheroids were labelled and co-cultured with macrophages or NK cells. Live-cell imaging (IncuCyte®) was used to measure ADCP and ADCC events.ResultsWe show that ICE® molecules can enhance ADCP of tumor cells mediated by various functional/phenotypic subsets of macrophages derived from in vitro differentiation of human monocytes. ICE®-induced ADCP of tumor target cells was seen across different macrophage subtypes (M1 and M2). We further investigated the expression of immune-suppressive checkpoint programmed death-ligand 1 (PD-L1) on macrophages upon ICE® treatment that could be a key anti-tumor molecule within the suppressive tumor microenvironment. Based on patient-derived xenograft line-derived spheroids (3D) generated from primary tumor samples of patients suffering from various malignancies, we could demonstrate robust ADCC and ADCP mediated by NK cells and macrophages, respectively.ConclusionsICE® molecules are able to mount robust NK cell- and macrophage-mediated anti-tumoral innate immune responses. This combined immune activity has the potential to not only fight tumor cells directly but also to initiate a full immune response comprised of innate and adaptive components of the immune system.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A938-A938
Author(s):  
Chiara Zambarda ◽  
Karolin Guldevall ◽  
Chiara Zambarda ◽  
Karolin Guldevall ◽  
Christian Breunig ◽  
...  

BackgroundThe use of bispecific natural killer (NK) cell engagers has emerged as a successful strategy for immune cell activation and killing of tumor cells through antibody-dependent cellular cytotoxicity (ADCC). Among these, tetravalent, bispecific innate cell engagers (ICE®) with specificity for the activating receptor CD16A selectively triggering innate responses from NK cells or macrophages represent the most clinically advanced concept. The CD30/CD16A specific ICE® AFM13, has shown efficacy in patients with CD30+ lymphomas as monotherapy1 and combination therapy with check-point inhibitors2 and most recently in combination with adoptive NK cell therapy.3 The EGFR/CD16A specific ICE® AFM24, targeting a variety of solid tumors like colorectal, or lung cancer with a unique mode of action independent of EGFR signaling inhibition, is currently evaluated in an ongoing Ph1/2a clinical study.MethodsWe used a microchip-based screening with single cell resolution4 to elucidate the dynamic responses of individual NK cells towards tumor target cells upon treatment with AFM13 or AFM24.ResultsWe found that AFM13 and AFM24 mediated potent activation of NK cells, leading to increased responsive cytotoxic NK cells and significantly increased the number of NK cells that exerted engagement with multiple target cells rendering these NK cells serial killers. Strikingly, bispecific ICE® molecules triggered stronger cytotoxic responses compared to monoclonal antibodies. One suggested strategy to boost killing by NK cells is to use molecular inhibitors or protein constructs that prevent shedding of CD16.5 However, previous results have shown that this can lead to impaired detachment from target cells, reducing the capacity for an individual NK cell to form serial contacts to target cells.6 We observed that the elevated NK cell killing induced by ICE® molecules was largely conserved when cells were treated with the shedding inhibitor Batimastat. Analysis of the functional dynamics of NK cells revealed that inhibition of CD16 shedding prevented NK cell detachment from target cells, resulting in cell cluster formation. This might strongly impact targeting of distant tumor cells by an individual NK cell thus limiting its anti-tumoral activity.ConclusionsIn conclusion, we show that both AFM13 and AFM24 increase the fraction of tumor-target responsive NK cells and boost serial killing of target cells by individual NK cells. Based on these data, ICE® molecules can be characterized as potent anti-tumoral agents leveraging the enormous potential of NK cells while maintaining crucial features of NK cell biology.AcknowledgementsWe thank members of the Önfelt lab for their valuable help and feedback.ReferencesSawas A, Elgedawe H, Vlad G, Lipschitz M, Chen P-H, Rodig SJ, et al. Clinical and biological evaluation of the novel CD30/CD16A tetravalent bispecific antibody (AFM13) in relapsed or refractory CD30-positive lymphoma with cutaneous presentation: a biomarker phase Ib/IIa study (NCT03192202). Blood 2018;132(Supplement 1):2908–2908.Bartlett NL, Herrera AF, Domingo-Domenech E, Mehta A, Forero-Torres A, Garcia-Sanz R, et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2020. Blood 2020;136(21):2401–2409.Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood–derived NK cells facilitates CAR-like responses against CD30 + malignancies. Clin Cancer Res Epub 2021.Guldevall K, Brandt L, Forslund E, Olofsson K, Frisk TW, Olofsson PE, et al. Microchip screening platform for single cell assessment of NK cell cytotoxicity. Front Immunol 2016;7:119.Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 2013;121(18):3599–608.Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright ANR, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol 2018;217(9):3267–83.Ethics ApprovalThis work was performed with NK cells from healthy anonymous blood donors, which requires no ethical permit according to local regulations.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Christopher M Borges ◽  
Kevin Wasko ◽  
Jared M Nasser ◽  
Kelly Donahue ◽  
Amanda Pfautz ◽  
...  

Natural killer (NK) cells distinguish tumor from healthy tissue via multiple mechanisms, including recognition of stress ligands and loss of MHC class I expression. For example, KIR mismatching enables allogenic NK cells to respond to MHC positive tumors in a similar manner to MHC negative tumors, making allogeneic NK cell therapy a promising approach for broad oncology indications. Accordingly, allogenic human HD-NK cells, including gene-modified cells, have demonstrated an impressive safety and efficacy profile when administered to patients with advanced hematologic malignancies. However, effector function of allogeneic NK cells can be diminished by the lack of functional persistence, as well as tumor-intrinsic immunosuppressive mechanisms, such as production of TGF-β. To this end, we developed a next-generation allogeneic NK cell therapy using CRISPR-Cas12a gene editing to enhance NK cell function through knockout of the genes CISH and TGFBR2. Both single and simultaneous targeting (DKO) of TGFBR2 and CISH in NK cells using CRISPR-Cas12a produced in/dels at both targets in greater than 80% of NK cells, with greater than 90% of edited NK cells viable at 72 hours post-editing. Importantly, we find that DKO NK cells do not phosphorylate the SMAD2/3 protein downstream of the TGF-b receptor complex and demonstrate increased phosphorylation of pSTAT3 and pSTAT5 upon IL-15 stimulation, consistent with protein level knockout of TGFBR2 and CISH. To determine whether DKO NK cells exhibited superior function relative to control NK cells, we first measured the ability of DKO NK cells to kill Nalm6 cells (adult B cell ALL) relative to unedited control NK cells. We find that in the presence of exogenous TGF-b, DKO NK cells demonstrate improved cytotoxicity against Nalm6 tumor targets by delaying tumor re-growth in comparison to control NK cells. To better characterize the ability of DKO NK cells to kill tumor cells, we developed an in vitro serial killing assay. In this long-duration assay, up to 30 days, control and DKO NK cells (grown in the presence of IL-15) were challenged every 48 hours with a new bolus of Nalm6 tumor targets. Both DKO and unedited NK cells control Nalm6 target cell growth for greater than 18 days (9 additions of new Nalm6 target cells), demonstrating a surprising ability for the same NK cells to serially kill new Nalm6 target cells for a prolonged period of time in vitro. We find that DKO NK cells produce higher levels of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay, suggesting that DKO NK cells can continue to produce these inflammatory cytokines even after serial killing. As many tumors, including hematologic malignancies, have high concentrations of TGF-β in their microenvironments, we next tested the ability of DKO NK cells to control the growth of Nalm6 cells in our serial killing assay in the presence of TGF-b. 10ng/mL TGF-β was added at the start of the assay as well as at each addition of new Nalm6 target cells. We observed that control NK cells fail to restrict Nalm6 target cell growth beyond 4 days (after 1 addition of new Nalm6 target cells) whereas DKO NK cells control Nalm6 target cell growth for greater than 18 days (after 9 additions of new Nalm6 target cells). Similar to the serial killing assay without TGF-b, we find that DKO NK cells produce higher concentrations of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay. Broadening our repertoire of target cells beyond B cell malignancies is now in progress, including the AML-like cell lines HL-60 and THP-1, the multiple myeloma cell line RPMI 8226, and various solid tumor targets. In summary, using CRISPR-Cas12a we demonstrated highly efficient gene editing of primary human NK cells at two unique targets designed to augment NK cell anti-tumor activity across a variety of malignancies. Most significantly, we demonstrate sustained anti-tumor serial-killing activity in the presence of the potent immunosuppressive cytokine TGF-β. Together, the increased overall effector function of CISH/TGFBR2 DKO primary human NK cells and their ability to serial kill, support their development as a potent allogeneic cell-based medicine for cancer. This potential medicine, termed EDIT-201, is being advanced to clinical study. Disclosures Borges: Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wasko:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Nasser:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Donahue:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Pfautz:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Antony:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Leary:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Sexton:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Morgan:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wong:Editas Medicine: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 925-925 ◽  
Author(s):  
Andreas Lundqvist ◽  
Kristy Greeneltch ◽  
Maria Berg ◽  
Shivani Srivastava ◽  
Nanae Harashima ◽  
...  

Abstract Killer IgG like receptor (KIR) inactivation of NK cells by self HLA molecules has been proposed as a mechanism through which malignant cells evade host NK cell-mediated immunity. To overcome this limitation, we sought to develop a method to sensitize the patient’s tumor to autologous NK cell cytotoxicity. The proteasome inhibitor bortezomib has recently been shown to enhance the activity of tumor death receptors. We found that exposure of a variety of different leukemia, lymphoma and solid tumor cancer cell lines to sub-apoptotic doses of bortezomib sensitized tumor cells in vitro to lysis by allogeneic NK cells. Importantly, this sensitizing effect also occurs with autologous NK cells normally rendered inactive via tumor KIR ligands; NK cells expanded from patients with metastatic renal cell carcinoma were significantly more cytotoxic against the patient’s own autologous tumor cells when pretreated with bortezomib compared to untreated tumors. This sensitization to autologous NK cell killing was also observed in vivo in two different murine tumor models. A significant delay in tumor growth in C57BL/6 mice bearing LLC1 tumors (figure) and a delay in tumor growth and a significant prolongation (p<0.01) in survival were observed in RENCA tumor bearing Balb/c mice treated with bortezomib and syngeneic NK cell infusions compared to untreated mice or animals treated with bortezomib alone or NK cells alone. An investigation into the mechanism through which NK cell cytotoxicity was potentiated revealed bortezomib enhanced the activity of tumor death receptor-dependent and -independent apoptotic pathways. More specifically, bortezomib sensitized human and murine tumor cells to TRAIL and perforin/granzyme mediated NK cell cytotoxicity respectively. These observations suggest that pretreatment of malignant cells with bortezomib could be used as a strategy to override NK cell inhibition via tumor KIR ligands, thus potentiating the activity of adoptively infused autologous NK cells. A clinical trial evaluating the safety and anti-tumor efficacy of adoptively infused autologous NK cells in patients with advanced malignancies with and without tumor sensitization using bortezomib is currently being explored. Figure: Tumor growth in LLC1 bearing C57BL/6 mice. Fourteen days following s.c. injection of 3x105 LLC1 tumor cells, mice received 15μg (i.p) bortezomib and/or an adoptive infusion of 1x106 NK cells from C57BL/6 mice (i.v) given on day 15. Each dot represents the tumor volume of individual mice measured on day 28 post tumor injection. Tumors were significantly smaller in mice treated with bortezomib followed by NK cells compared to controls or mice that received either NK cells alone or bortezomib alone (p<0.04 for all groups). Figure:. Tumor growth in LLC1 bearing C57BL/6 mice. . / Fourteen days following s.c. injection of 3x105 LLC1 tumor cells, mice received 15μg (i.p) bortezomib and/or an adoptive infusion of 1x106 NK cells from C57BL/6 mice (i.v) given on day 15. Each dot represents the tumor volume of individual mice measured on day 28 post tumor injection. Tumors were significantly smaller in mice treated with bortezomib followed by NK cells compared to controls or mice that received either NK cells alone or bortezomib alone (p<0.04 for all groups).


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3714-3714 ◽  
Author(s):  
Lei Wu ◽  
Peter Schafer ◽  
George Muller ◽  
David Stirling ◽  
J. Blake Bartlett

Abstract Lenalidomide (Revlimid® is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk MDS associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone is for the treatment of multiple myeloma patients who have received at least one prior therapy. Encouraging early results suggest a potential for clinical efficacy in B cell non-Hodgkin’s lymphoma (NHL). Potential mechanisms of action include anti-angiogenic, anti-proliferative and immunomodulatory activities. Lenalidomide has been shown to enhance Th1-type cytokines and T cell and NK cell activation markers in patients with advanced cancers. Furthermore, lenalidomide has been shown to enhance rituximab-mediated protection in a SCID mouse lymphoma model in vivo. We have utilized an in vitro ADCC system to assess the ability of lenalidomide to directly enhance human NK cell function in response to therapeutic antibodies, such as rituximab (chimeric anti-CD20 mAb). Isolated NK cells produced little or no IFN-γ in response to IgG and/or IL-2 or IL-12. However, pre-treatment of NK cells with lenalidomide greatly enhanced IFN-γ production by NK cells in a dose-dependent manner. In a functional ADCC assay, NHL cell lines (Namalwa, Farage & Raji) were pre-coated with rituximab and exposed to NK cells pre-treated with lenalidomide in the presence of either exogenous IL-2 or IL-12. After 4 hours in culture the viability of the tumor cells was assessed. Lenalidomide consistently and synergistically increased the killing of tumor cells in a dose-dependent manner and up to >4-fold compared to rituximab alone. Rituximab alone had only a small effect in this model and there was no killing of cells in the absence of rituximab. The presence of either exogenous IL-2 or IL-12 was required to see enhanced killing by lenalidomide. In cancer patients lenalidomide has been shown to increase serum IL-12 levels and is also known to induce IL-2 production by T cells in vitro. Potential mechanisms for enhanced ADCC include increased signaling through NK FCγ receptors and/or IL-2 or IL-12 receptors. However, we found that these receptors are unaffected by lenalidomide, although downstream effects on NK signaling pathways are likely and are being actively investigated. In conclusion, we have shown that lenalidomide strongly enhances the ability of rituximab to induce ADCC mediated killing of NHL cells in vitro. This provides a strong rationale for combination of these drugs in patients with NHL and CLL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3870-3870 ◽  
Author(s):  
Don Benson ◽  
Courtney E Bakan ◽  
Shuhong Zhang ◽  
Lana Alghothani ◽  
Jing Liang ◽  
...  

Abstract Abstract 3870 Poster Board III-806 Background NK cell activity against tumor cells is regulated by a balance of inhibitory and activating signals mediated by receptors on NK cells that recognize inhibitory and activating ligands expressed by cancer cells. IPH2101 (1-7F9) is a novel monoclonal anti-inhibitor KIR blocking antibody that has been shown to augment NK cell function against MM targets. Moreover, lenalidomide has been shown to expand and activate NK cells in vivo and in vitro. We have previously reported that the combination of IPH2101 and lenalidomide enhances NK cell mediated cytotoxicity against MM cells compared to each agent alone (Zhang et al., AACR 2009). We expand our studies to investigate potential mechanisms for the enhancement of NK cell activity by the combination of IPH2101 and lenalidomide. Methods The effects of IPH2101 and lenalidomide alone and in combination were studied using primary human NK cells from healthy donors as well as from MM patients. The MM cell lines U266 and RPMI 8226 as well as primary tumor cells from marrow aspirates of MM patients served as target cells. The effect of lenalidomide on MM activating and inhibitory ligand expression was studied by flow cytometry. NK cell trafficking was investigated with standard transwell plate migration assay. Immune complex formation between NK cell effectors and MM tumor targets was characterized by flow cytometry in control conditions and with NK cells pre-treated with IPH2101 and lenalidomide. The effects of IPH2101 and lenalidomide were studied regarding interferon-gamma and granzyme B production by ELISPOT and target-specific cytotoxicity studies were conducted to complement effector-based assays. Results IPH2101 (30 ug/ml) significantly enhanced cytotoxicity against U266 cells and primary MM tumor cells by both purified NK cells at effector:target (E:T) ratios of 10:1 or less, and also of freshly isolated peripheral blood mononuclear cells (PBMC) at E:T ratios of 60:1 or less, from more than 10 random donors. In addition, treatment of PBMC with 5-10 μmol/L lenalidomide for 72h without interleukin (IL)-2 increased NK cell lysis of U266. Treatment of PBMC from normal donors did not enhance the expression of the NK receptors KIR, NKG2D, NCR, TRAIL, and DNAM-1. Incubation of U266 cells with lenalidomide (5 uM) for 3-5 days resulted in significant enhancement of cytotoxicity by normal donor NK cells. This was associated with upregulation of the activating ligands, MICA, ULBP-2, DR4, and CD112. Using blocking antibodies to NKG2D, TRAIL, and DNAM-1, lenalidomide enhancement of MM cell killing was abrogated indicating the importance of the modulation of the ligands to the latter receptors by lenalidomide. Although IPH2101 and lenalidomide did not significantly increase NK cell migration into normal media, migration was enhanced 2.98-fold (+/− 0.36, p < 0.05) towards U266 cell targets (n= 3, p < 0.05) and MM patient serum 3.2-fold (+/− 0.4, n=3, p < 0.05). IPH2101 and lenalidomide also led to a 2.3-fold (+/− 0.43, p < 0.05) increase in immune complex formation between NK cells and MM tumor cells. IPH2101 and lenalidomide also augmented NK cell interferon gamma production against MM (control mean 303 spots/well +/− 13 versus 525 +/− 83, n=3, p < 0.05) and granzyme B production (control mean 115 +/− 98 versus 449 +/−72, n=3, p < 0.05). Importantly, in all experiments described herein, the effects of IPH2101 and lenalidomide together were greater than either agent alone. Conclusions Taken together, our data suggest that IPH2101 and lenalidomide may exert complementary mechanisms on both effector and target cells to enhance NK cell mediated killing of MM cells. Moreover, these agents have no predicted clinical cross-toxicities. A single-agent phase 1 clinical trial of IPH2101 has shown the mAb to be safe and well tolerated in MM patients. These findings support a phase 1/2 clinical trial of IPH2101 with lenalidomide as a first dual-innate immunotherapy for patients with MM. Disclosures: Andre: Innate Pharma: Employment. Squiban:Innate pharma: Employment. Romagne:Innate Pharma: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3193-3193 ◽  
Author(s):  
Theresa Placke ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
Hans-Georg Kopp

Abstract Abstract 3193 NK cells as part of the innate immune system substantially contribute to cancer immune surveillance. They prevent tumor progression and metastasis due to their ability to mediate cellular cytotoxicity and to produce cytokines like IFN-γ, which, among others, stimulates subsequent adaptive immune responses. NK reactivity results from an integrative response emerging upon recognition of multiple ligands for activating and inhibitory NK cell receptors including various members of the TNFR family. Apart from the direct interaction with their target cells, NK cell activity is further influenced by the reciprocal interplay with various other hematopoietic cells like e.g. dendritic cells. Metastatic tumor spread in experimental animals is dramatically reduced in thrombopenic mice. Additional depletion of NK cells reverses this effect, indicating that platelets may impair NK anti-tumor reactivity. However, the underlying mechanisms have not been fully elucidated, especially in humans. Recently, we demonstrated that NK anti-tumor immunity is impaired by platelet-derived TGF-β, which is released upon interaction of platelets with tumor cells (Kopp et al., Cancer Res. 2009). Here we report that the ligand for the TNFR family member GITR (GITRL) is upregulated on megakaryocytes during maturation resulting in substantial GITRL expression by platelets. Since we recently identified GITR as inhibitory NK receptor involved in tumor immune escape (e.g., Baltz et al., Blood 2008, Baessler et al., Cancer Res. 2009) we investigated how platelet-derived GITRL influences platelet function and NK immune surveillance. Signaling via GITRL into platelets upon interaction with NK-expressed GITR or recombinant GITR-Ig fusion protein did not alter platelet activation as revealed by analysis of the activation marker CD62P and release of TGF-β. Interestingly, we found that GITRL-negative tumor cells rapidly get coated by platelets, which confers a seemingly GITRL-positive phenotype. “GITRL pseudoexpression” on tumor cells caused a substantial reduction of NK cell cytotoxicity and cytokine production. This reduced NK reactivity was not due to induction of apoptosis via GITR and could be restored by addition of a blocking GITR antibody. Thus, coating of tumor cells by platelets inhibits NK reactivity, which is in part mediated by platelet-derived GITRL. Our data provide a functional basis for the previously observed finding that platelets increase metastasis i.e. by enabling evasion of tumor cells from NK-mediated immune surveillance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3665-3668 ◽  
Author(s):  
Josephine L. Meade ◽  
Erika A. de Wynter ◽  
Peter Brett ◽  
Saghira Malik Sharif ◽  
C. Geoffrey Woods ◽  
...  

Activation of granzyme B, a key cytolytic effector molecule of natural killer (NK) cells, requires removal of an N-terminal pro-domain. In mice, cathepsin C is required for granzyme processing and normal NK cell cytolytic function, whereas in patients with Papillon-Lefèvre syndrome (PLS), loss-of-function mutations in cathepsin C do not affect lymphokine activated killer (LAK) cell function. Here we demonstrate that resting PLS NK cells do have a cytolytic defect and fail to induce the caspase cascade in target cells. NK cells from these patients contain inactive granzyme B, indicating that cathepsin C is required for granzyme B activation in unstimulated human NK cells. However, in vitro activation of PLS NK cells with interleukin-2 restores cytolytic function and granzyme B activity by a cathepsin C-independent mechanism. This is the first documented example of a human mutation affecting granzyme B activity and highlights the importance of cathepsin C in human NK cell function.


Sign in / Sign up

Export Citation Format

Share Document