A case of paternal uniparental isodisomy for chromosome 7 associated with overgrowth

2018 ◽  
Vol 55 (8) ◽  
pp. 567-570 ◽  
Author(s):  
Akie Nakamura ◽  
Koji Muroya ◽  
Hiroko Ogata-Kawata ◽  
Kazuhiko Nakabayashi ◽  
Keiko Matsubara ◽  
...  

BackgroundPaternal uniparental disomy for chromosome 7 (upd(7)pat) is extremely rare, and only four cases have been previously reported. As these cases were accompanied by autosomal-recessive disorders which are likely to be involved in growth restriction, the relevance of upd(7)pat to the overgrowth phenotype remains unclear. Here we describe one case of upd(7)pat with no additional genetic diseases, which may answer the question.MethodsA 5-year-old Japanese boy presented with a tall stature of unknown causes. To detect the genetic cause of the tall stature, we performed Sanger sequencing, targeted resequencing, comparative genomic hybridisation and single-nucleotide polymorphism (SNP) array analyses, methylation analysis and microsatellite analysis.ResultsWe could not detect pathogenic variants in causative genes for overgrowth syndrome or apparent copy number alterations. DNA methylation analysis revealed hypomethylation at the GRB10, PEG1 and PEG10 differentially methylated regions. SNP array and microsatellite analyses suggested paternal uniparental isodisomy for chromosome 7. Furthermore, we could not identify homozygous mutations of known causative genes for inherited disorders on chromosome 7.ConclusionWe report the first case of upd(7)pat with an overgrowth phenotype.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Dan Li ◽  
Yun Wang ◽  
Nan Zhao ◽  
Liang Chang ◽  
Ping Liu ◽  
...  

Abstract Background Uniparental disomy (UPD) refers to the situation in which two copies of homologous chromosomes or part of a chromosome originate from the one parent and no copy is supplied by the other parent. Case presentation Here, we reported a woman whose karyotype was 46, XX, t (1;17)(q42;q21), has obtained 5 embryos by intracytoplasmic sperm injection (ICSI) after one cycle of in vitro fertility (IVF). After microarray-based comparative genomic hybridization (array-CGH) for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR), two embryos were balanced, one balanced embryo was implanted and the patient successfully achieved pregnancy. Amniocentesis was performed at the 19th week of gestation for karyotype analysis and single nucleotide polymorphism (SNP)-array test. The result of karyotype analysis was: mos 47, XXY [19]/46, XY [81]; SNP-array results revealed 46, XY, iUPD (9) pat. After full genetic counseling for mosaic Klinefelter’s syndrome and paternal iUPD (9), the couple decided to continue pregnancy, and the patient gave birth to a healthy boy. The newborn is now 3.5 years old, and developed normally. This case will provide counseling evidences of paternal iUPD (9) for doctors. Conclusions This is the first case report of paternal iUPD9 with mosaic Klinefelter’s syndrome, and no abnormality has been observed during the 3.5-year follow-up. Further observation is required to determine whether the imprinted genes on the chromosomes are pathogenic and whether recessive pathogenetic genes are activated.


2021 ◽  
Author(s):  
xiufen bu ◽  
Xu Li ◽  
Shihao Zhou ◽  
Liangcheng Shi ◽  
Xuanyu Jiang ◽  
...  

Abstract Background Paternal uniparental disomy (UPD) of chromosome 3 is a very rare condition. At present, only 5 cases of paternal UPD(3) has been reported. This was the second ascertained paternal UPD(3) with no apparent disease phenotype.Case presentation We hereby reported a case of a fetus with normal karyotype and normal ultrasound features at the whole gestation. A copy neutral regions of homozygosity on chromosome 3 was indentified by Single Nucleotide Polymophism array (SNP array). Subsequent SNP array data of parent–child trios showed the fetus has carried complete paternal uniparental isodisomy (isoUPD) of chromosome 3. The parents decided to continue the pregnancy after genetic counseling. The neonate had normal physical findings at birth and develops normally after 1.5 years. Conclusions The findings could provide further evidence to confirm that there was no important imprinted genes causing serious diseases on paternal chromosome 3 and provided a reference for the prenatal diagnosis and genetic counseling of UPD(3) in the future.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Sanaa Choufani ◽  
Jung Min Ko ◽  
Youliang Lou ◽  
Cheryl Shuman ◽  
Leona Fishman ◽  
...  

Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1088-1088
Author(s):  
Andrew G. Hall ◽  
Lisa C. Bloodworth ◽  
Linda A. Hogarth ◽  
Nick P. Bown ◽  
Julie A. Irving

Abstract Loss of heterozygosity (LOH) is detectable in many forms of malignancy, including leukaemia, using techniques such as microsatellite analysis and comparative genomic hybridisation. However, these techniques are laborious and require the use of relatively large amounts of DNA if the whole genome is to be examined. Here we describe the use of oligonucleotide microarrays to characterise single nucleotide polymorphisms (SNPs) in lymphoblasts isolated from children with acute lymphoblastic leukaemia for the pan-genomic mapping of LOH with a resolution of 100–200kb. Results were compared with DNA obtained during remission and on relapse. Abnormalities were seen in 8 of 10 cases. The two cases with no abnormalities and one case which showed identical changes affecting whole chromosomes at relapse and presentation remain in remission 1–9 years following retreatment. The 7 cases which showed LOH not affecting entire chromosomes died following relapse, suggesting that partial LOH may be associated with a poor prognosis. In 4 cases LOH was only detectable at relapse suggesting that progressive LOH may be a cause of disease progression and/or drug resistance. This was supported by detailed analysis of one case in which LOH involving the glucocorticoid receptor (GR) was associated with mutation of the remaining allele. In cell line models the loss of a functional GR is associated with profound resistance to steroids. The most frequent abnormality detected in this series involved chromosome 9p. In each of the four cases where this was observed LOH included the INK4 locus. In three of the four cases INK4 loss was only observed at relapse (see figure), suggesting that this abnormality may be commonly associated with treatment failure, supporting previous reports that 9p abnormailities are associated with a poor prognosis. One case was reported as showing monosomy 20 as the sole cytogenetic aberration but LOH analysis identified 9p LOH and loss of 20q, with retention of heterozygocity for 20p. These findings strongly implicate unbalanced translocation der(9)t(9;20),-20 as described by Clark et al (Leukaemia, 2000, 14:241). Our observations demonstrate that SNP array analysis is a powerful new tool for the analysis of allelic imbalance and unbalanced translocations in leukaemic blasts.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1538-1538
Author(s):  
Frank Stegelmann ◽  
Martin Griesshammer ◽  
Sandra Ruf ◽  
Susanne Kuhn ◽  
Frank G. Rücker ◽  
...  

Abstract Recently, the identification of the gain of function mutation JAK2V617F delivered important insights into the pathogenesis of BCR/ABL negative myeloproliferative disorders (MPD). JAK2V617F is detectable in more than 90% of polycythemia vera (PV) patients (pts) and in approximately 50% of pts with essential thrombocythemia (ET) or primary myelofibrosis (PMF), representing the genetic hallmark of BCR/ABL negative disease. However, about 30% of MPD pts lack the JAK2V617F mutation and previous studies on ET and PV demonstrated that clonality exceeds the percentage of V617F mutated cells. These findings suggest that additional genetic alterations are involved in the pathogenesis of MPD, in both JAK2 mutated and unmutated pts. To identify novel genetic aberrations and to determine whether specific lesions are associated with disease phenotype, genomic DNA from granulocytes of 72 MPD pts classified according to the WHO criteria was analyzed using high-resolution, genome-wide microarray techniques [disease, number analyzed, JAK2 mutation status: PMF, n=14, 9/14; post-ET MF, n=5, 3/5; post-PV MF, n=5, 5/5; PV, n=37, 37/37; ET, n=11, 11/11]. In a first approach, all cases were investigated by comparative genomic hybridization to 8k arrays (array CGH) with an average probe spacing of less than 1 Mb. While no genomic imbalances were found in ET, 11% of PV pts (n=4) exhibited large (>10 Mb) deletions on 20q (n=2) or gains on 9p and 1q (n=1, each). In addition, small (<1 Mb) recurrent gains in 1q21.1 (n=2) and 22q11.23 (n=2) were identified. In MF pts the incidence of large genomic imbalances was 25% (n=6) with trisomy 9 (n=3) being the most frequent aberration followed by loss of 20q, 5q, and 13q in single cases. Furthermore, in one pt with post-PV MF small genomic losses in 17q11.2 (2 Mb) and 17p13.2 (0.8 Mb) were identified harbouring NF1 but not TP53. Deletion of the NF1 allele without concomitant loss of TP53 was confirmed by FISH. To further increase resolution and to investigate the role of uniparental disomy (UPD), single nucleotide polymorphism (SNP) analysis using the Affymetrix 250k Nsp SNP array was performed in all MF cases. Copy number estimation and loss of heterozygosity probability were analyzed using a set of 117 remission samples from acute myeloid leukemia pts as a common reference. SNP analysis confirmed all anomalies detected by array CGH. In addition, SNP analysis revealed small genomic losses (1.6–2.6 Mb) in 1q21.2 (n=3), 5q13.2, and 3p13 (n=1, each), and in one secondary MF pt another microdeletion in 17q11.2 (1.2 Mb). UPDs recurrently affected 9p (n=5) in a region harbouring the JAK2 locus. In single cases, large UPDs of 1q (25 Mb), 2p (14 Mb), 5q (4 Mb), 6p (11 Mb), and 7q (11 Mb) were identified. Of note, all JAK2V617F mutated post-PV and post-ET MF cases exhibited 9p abnormalities represented either by trisomy 9 or UPD of 9p. In conclusion, using a combined microarray approach we were able to detect novel submicroscopic alterations in addition to known abnormalities. Parallel analysis of both techniques clearly demonstrated the superiority of array-SNP mapping. Further analyses on larger pt populations and correlation with global gene expression data will facilitate the identification of disease-related genes that are involved in the pathogenesis of BCR/ABL negative MPD.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Edith Coonen ◽  
Carmen Rubio ◽  
Dimitra Christopikou ◽  
Eftychia Dimitriadou ◽  
Julia Gontar ◽  
...  

Abstract The field of preimplantation genetic testing (PGT) is evolving fast, and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for PGD, published in 2005 and 2011, are considered outdated, and the development of new papers outlining recommendations for good practice in PGT was necessary. The current paper provides recommendations on the technical aspects of PGT for chromosomal structural rearrangements (PGT-SR) and PGT for aneuploidies (PGT-A) and covers recommendations on array-based comparative genomic hybridisation (aCGH) and next-generation sequencing (NGS) for PGT-SR and PGT-A and on fluorescence in situ hybridisation (FISH) and single nucleotide polymorphism (SNP) array for PGT-SR, including laboratory issues, work practice controls, pre-examination validation, preclinical work-up, risk assessment and limitations. Furthermore, some general recommendations on PGT-SR/PGT-A are formulated around training and general risk assessment, and the examination and post-examination process. This paper is one of a series of four papers on good practice recommendations on PGT. The other papers cover the organisation of a PGT centre, embryo biopsy and tubing and the technical aspects of PGT for monogenic/single-gene defects (PGT-M). Together, these papers should assist everyone interested in PGT in developing the best laboratory and clinical practice possible.


2021 ◽  
Vol 22 (15) ◽  
pp. 8082
Author(s):  
Maurizio Delvecchio ◽  
Federica Ortolani ◽  
Orazio Palumbo ◽  
Concetta Aloi ◽  
Alessandro Salina ◽  
...  

Wolfram syndrome is a rare autosomal recessive disorder characterized by optic atrophy and diabetes mellitus. Wolfram syndrome type 1 (WFS1) is caused by bi-allelic pathogenic variations in the wolframin gene. We described the first case of WFS1 due to a maternal inherited mutation with uniparental mero-isodisomy of chromosome 4. Diabetes mellitus was diagnosed at 11 years of age, with negative anti-beta cells antibodies. Blood glucose control was optimal with low insulin requirement. No pathogenic variations in the most frequent gene causative of maturity-onset diabetes of the young subtypes were detected. At 17.8 years old, a rapid reduction in visual acuity occurred. Genetic testing revealed the novel homozygous variant c.1369A > G; p. Arg457Gly in the exon 8 of wolframin gene. It was detected in a heterozygous state only in the mother while the father showed a wild type sequence. In silico disease causing predictions performed by Polyphen2 classified it as “likely damaging”, while Mutation Tester and Sift suggested it was “polymorphism” and “tolerated”, respectively. High resolution SNP-array analysis was suggestive of segmental uniparental disomy on chromosome 4. In conclusion, to the best of our knowledge, we describe the first patient with partial uniparental mero-isodisomy of chromosome 4 carrying a novel mutation in the wolframin gene. The clinical phenotype observed in the patient and the analysis performed suggest that the genetic variant detected is pathogenetic.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 183-183 ◽  
Author(s):  
K.-John Cheung ◽  
Adele Telenius ◽  
Betty Lai ◽  
Nathalie Johnson ◽  
Thomas Relander ◽  
...  

Abstract Background: The initial genetic event in ∼85% of follicular lymphomas (FL), the most common B-cell lymphoma in North America, is the t(14;18)(q32;q21) resulting in over-expression of the anti-apoptotic protein Bcl-2. The secondary events associated with disease progression are not well understood. Alterations affecting the p arm of chromosome 1 are evident by standard karyotype analysis in ∼20% of FL. We have further examined the relationship between 1p deletion and FL using high resolution genomic analyses. Methods: The prevalence of 1p alterations was investigated in 139 cases of indolent and transformed FL using whole genome tiling path BAC array Comparative Genomic Hybridization (array CGH). Array-based single nucleotide polymorphism analysis was performed on a subset of cases using Affymetrix 500K SNP arrays. Results: Array CGH identified a minimum region of deletion spanning ∼0.5MB within 1p36.32 in 51 cases (37%). In 38 cases (27%) this loss was exhibited in the transformed sample but not the pre-transformation sample. The majority of cases displayed heterozygous deletion, while two cases showed homozygous deletion. The mechanisms of loss included simple deletions, unbalanced translocations with various partner chromosomes and eleven cases with an unbalanced t(1;1)(p36;q12). The Affymetrix 500 SNP array analyses showed copy neutral loss of heterozygosity or acquired uniparental disomy (aUPD) in three of ten cases that were negative for loss by aCGH. Contained within the 1p36.32 minimally deleted region are only a few candidate genes including tumor necrosis factor receptor superfamily 14 (TNFRS14), which has been implicated in growth inhibition of HT-29 human colon adenocarcinoma cells and induction of Fas-mediated apoptosis in non-Hodgkin’s lymphoma. Conclusions: Our data indicate that loss of heterozygosity at 1p36.32 through deletion or aUPD constitutes the most common secondary cytogenetic event in FL. LOH at 1p36 may represent an important step in the progression of indolent to transformed FL. Further studies have been initiated to investigate other possible gene inactivation events such as methylation and mutation.


Sign in / Sign up

Export Citation Format

Share Document