scholarly journals UKCGG Consensus Group guidelines for the management of patients with constitutional TP53 pathogenic variants

2020 ◽  
pp. jmedgenet-2020-106876 ◽  
Author(s):  
Helen Hanson ◽  
Angela F Brady ◽  
Gillian Crawford ◽  
Rosalind A Eeles ◽  
Sarah Gibson ◽  
...  

Constitutional pathogenic variants in TP53 are associated with Li-Fraumeni syndrome or the more recently described heritable TP53-related cancer syndrome and are associated with increased lifetime risks of a wide spectrum of cancers. Due to the broad tumour spectrum, surveillance for this patient group has been limited. To date, the only recommendation in the UK has been for annual breast MRI in women; however, more recently, a more intensive surveillance protocol including whole-body MRI (WB-MRI) has been recommended by International Expert Groups. To address the gap in surveillance for this patient group in the UK, the UK Cancer Genetics Group facilitated a 1-day consensus meeting to discuss a protocol for the UK. Using a preworkshop survey followed by structured discussion on the day, we achieved consensus for a UK surveillance protocol for TP53 carriers to be adopted by UK Clinical Genetics services. The key recommendations are for annual WB-MRI and dedicated brain MRI from birth, annual breast MRI from 20 years in women and three-four monthly abdominal ultrasound in children along with review in a dedicated clinic.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 380
Author(s):  
Meis Omran ◽  
Emma Tham ◽  
Yvonne Brandberg ◽  
Håkan Ahlström ◽  
Claudia Lundgren ◽  
...  

A surveillance strategy of the heritable TP53-related cancer syndrome (hTP53rc), commonly referred to as the Li–Fraumeni syndrome (LFS), is studied in a prospective observational nationwide multi-centre study in Sweden (SWEP53). The aim of this sub-study is to evaluate whole-body MRI (WB-MRI) regarding the rate of malignant, indeterminate, and benign imaging findings and the associated further workup generated by the baseline examination. Individuals with hTP53rc were enrolled in a surveillance program including annual whole-body MRI (WB-MRI), brain-MRI, and in female carriers, dedicated breast MRI. A total of 68 adults ≥18 years old have been enrolled to date. Of these, 61 fulfilled the inclusion criteria for the baseline MRI scan. In total, 42 showed a normal scan, while 19 (31%) needed further workup, of whom three individuals (3/19 = 16%) were diagnosed with asymptomatic malignant tumours (thyroid cancer, disseminated upper GI cancer, and liver metastasis from a previous breast cancer). Forty-three participants were women, of whom 21 had performed risk-reducing mastectomy prior to inclusion. The remaining were monitored with breast MRI, and no breast tumours were detected on baseline MRI. WB-MRI has the potential to identify asymptomatic tumours in individuals with hTP53rc syndrome. The challenge is to adequately and efficiently investigate all indeterminate findings. Thus, a multidisciplinary team should be considered in surveillance programs for individuals with hTP53rc syndrome.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10530-10530
Author(s):  
Thomas Meyskens ◽  
Vincent Vandecaveye ◽  
Steven Pans ◽  
Raphaëla Dresen ◽  
Chantal Van Ongeval ◽  
...  

10530 Background: Germline pathogenic variants (PV) in the tumor suppressor gene TP53 are associated with a high risk of developing diverse malignancies, often at young age, and predispose to Li-Fraumeni syndrome (LFS). Surveillance programs for presymptomatic PV carriers have shown survival benefit in a non-randomized trial. Here we describe the surveillance findings and clinical outcomes of adults with TP53 PV undergoing a standardized screening protocol. Methods: We identified adults with germline PV in TP53 who underwent surveillance at the University Hospitals Leuven, Belgium, between 04/2013 and 08/2020. Patients with prior cancer were allowed, while patients with an active malignancy requiring treatment at diagnosis of the TP53 PV were excluded. Surveillance was performed per modified Toronto protocol, including annual whole body diffusion-weighted MRI (WB-DWI/MRI), brain MRI, abdominal ultrasound (US), endoscopic surveillance, laboratory tests, dermatological examination and breast MRI/US in females. The primary aim was to evaluate the number and type of malignancies and premalignant lesions diagnosed during screening and to assess the proportion of malignancies detected by surveillance. Secondary outcomes were the cancer detection rate during the first year of screening, the proportion of carriers with false-positive findings, and overall survival. Results: We included 42 adults from 20 apparently unrelated families. Median age was 38y (range, 17-70y) and 23 had a history of prior cancer. After a median follow-up of 41.5mo, we diagnosed 18 cancers in 12/42 participants (29%). Overall survival was 95% in all participants, including 2 carriers who opted to discontinue surveillance. Surveillance detected 10/18 cancers (56%), the majority of whom through WB-DWI/MRI (6/10; 60%). No malignancies were identified with brain MRI. In 5/42 individuals (12%), surveillance detected a malignancy during the first year of screening. Only 2/10 cancers discovered with surveillance (1 soft tissue and 1 bone sarcoma) belong to the LFS core tumors. Cancers not detected with surveillance (8/18) were 6 non-melanoma skin cancers and 2 interval cancers (sarcoma post radiation, secondary acute leukemia). Additionally, we detected 27 premalignant lesions in 11/42 patients (26%), of whom 78% were diagnosed by colonoscopy. False-positive findings occurred in 7/42 patients (17%) and were mostly seen with WB-DWI/MRI. Conclusions: Adults with germline PV in TP53 that undergo surveillance have high cancer detection rates. The majority of malignancies were asymptomatic at diagnosis and detected with WB-DWI/MRI. Despite the high cancer incidence, few LFS core cancers were diagnosed and survival was encouraging. Increased genetic testing changes the clinical picture of germline TP53 carrier populations, justifying the transition from LFS to a wider concept of heritable TP53-related cancer syndrome.


2018 ◽  
Vol 55 (6) ◽  
pp. 372-377 ◽  
Author(s):  
Amy Taylor ◽  
Angela F Brady ◽  
Ian M Frayling ◽  
Helen Hanson ◽  
Marc Tischkowitz ◽  
...  

Genetic testing for hereditary cancer predisposition has evolved rapidly in recent years with the discovery of new genes, but there is much debate over the clinical utility of testing genes for which there are currently limited data regarding the degree of associated cancer risk. To address the discrepancies that have arisen in the provision of these tests across the UK, the UK Cancer Genetics Group facilitated a 1-day workshop with representation from the majority of National Health Service (NHS) clinical genetics services. Using a preworkshop survey followed by focused discussion of genes without prior majority agreement for inclusion, we achieved consensus for panels of cancer genes with sufficient evidence for clinical utility, to be adopted by all NHS genetics services. To support consistency in the delivery of these tests and advice given to families across the country, we also developed management proposals for individuals who are found to have pathogenic mutations in these genes. However, we fully acknowledge that the decision regarding what test is most appropriate for an individual family rests with the clinician, and will depend on factors including specific phenotypic features and the family structure.


2011 ◽  
Vol 70 ◽  
pp. 722-722
Author(s):  
S Sarkar ◽  
J R Bapuraj ◽  
S M Donn ◽  
I Bhagat ◽  
J D Barks

BMJ ◽  
2021 ◽  
pp. n214
Author(s):  
Weedon MN ◽  
Jackson L ◽  
Harrison JW ◽  
Ruth KS ◽  
Tyrrell J ◽  
...  

Abstract Objective To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population. Design Retrospective, population based diagnostic evaluation. Participants 49 908 people recruited to the UK Biobank with SNP chip and next generation sequencing data, and an additional 21 people who purchased consumer genetic tests and shared their data online via the Personal Genome Project. Main outcome measures Genotyping (that is, identification of the correct DNA base at a specific genomic location) using SNP chips versus sequencing, with results split by frequency of that genotype in the population. Rare pathogenic variants in the BRCA1 and BRCA2 genes were selected as an exemplar for detailed analysis of clinically actionable variants in the UK Biobank, and BRCA related cancers (breast, ovarian, prostate, and pancreatic) were assessed in participants through use of cancer registry data. Results Overall, genotyping using SNP chips performed well compared with sequencing; sensitivity, specificity, positive predictive value, and negative predictive value were all above 99% for 108 574 common variants directly genotyped on the SNP chips and sequenced in the UK Biobank. However, the likelihood of a true positive result decreased dramatically with decreasing variant frequency; for variants that are very rare in the population, with a frequency below 0.001% in UK Biobank, the positive predictive value was very low and only 16% of 4757 heterozygous genotypes from the SNP chips were confirmed with sequencing data. Results were similar for SNP chip data from the Personal Genome Project, and 20/21 individuals analysed had at least one false positive rare pathogenic variant that had been incorrectly genotyped. For pathogenic variants in the BRCA1 and BRCA2 genes, which are individually very rare, the overall performance metrics for the SNP chips versus sequencing in the UK Biobank were: sensitivity 34.6%, specificity 98.3%, positive predictive value 4.2%, and negative predictive value 99.9%. Rates of BRCA related cancers in UK Biobank participants with a positive SNP chip result were similar to those for age matched controls (odds ratio 1.31, 95% confidence interval 0.99 to 1.71) because the vast majority of variants were false positives, whereas sequence positive participants had a significantly increased risk (odds ratio 4.05, 2.72 to 6.03). Conclusions SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4202
Author(s):  
Carlotta Spagnoli ◽  
Carlo Fusco ◽  
Antonio Percesepe ◽  
Vincenzo Leuzzi ◽  
Francesco Pisani

Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.


2021 ◽  
pp. 1-9
Author(s):  
Janice L. Atkins ◽  
Luke C. Pilling ◽  
Christine J. Heales ◽  
Sharon Savage ◽  
Chia-Ling Kuo ◽  
...  

Background: Brain iron deposition occurs in dementia. In European ancestry populations, the HFE p.C282Y variant can cause iron overload and hemochromatosis, mostly in homozygous males. Objective: To estimated p.C282Y associations with brain MRI features plus incident dementia diagnoses during follow-up in a large community cohort. Methods: UK Biobank participants with follow-up hospitalization records (mean 10.5 years). MRI in 206 p.C282Y homozygotes versus 23,349 without variants, including T2 * measures (lower values indicating more iron). Results: European ancestry participants included 2,890 p.C282Y homozygotes. Male p.C282Y homozygotes had lower T2 * measures in areas including the putamen, thalamus, and hippocampus, compared to no HFE mutations. Incident dementia was more common in p.C282Y homozygous men (Hazard Ratio HR = 1.83; 95% CI 1.23 to 2.72, p = 0.003), as was delirium. There were no associations in homozygote women or in heterozygotes. Conclusion: Studies are needed of whether early iron reduction prevents or slows related brain pathologies in male HFE p.C282Y homozygotes.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1218
Author(s):  
Raffaella Brunetti-Pierri ◽  
Marianthi Karali ◽  
Francesco Testa ◽  
Gerarda Cappuccio ◽  
Maria Elena Onore ◽  
...  

Pathogenic variants in the MKS1 gene are responsible for a ciliopathy with a wide spectrum of clinical manifestations ranging from Meckel and Joubert syndrome (JBTS) to Bardet-Biedl syndrome, and involving the central nervous system, liver, kidney, skeleton, and retina. We report a 39-year-old male individual presenting with isolated Retinitis Pigmentosa (RP), as assessed by full ophthalmological evaluation including Best-Corrected Visual Acuity measurements, fundus examination, Goldmann Visual Field test, and full-field Electroretinography. A clinical exome identified biallelic nonsense variants in MKS1 that prompted post-genotyping investigations for systemic abnormalities of ciliopathy. Brain magnetic resonance imaging revealed malformations of the posterior cranial fossa with the ‘molar tooth sign’ and cerebellar folia dysplasia, which are both distinctive features of JBTS. No other organ or skeletal abnormalities were detected. This case illustrates the power of clinical exome for the identification of the mildest forms of a disease spectrum, such as a mild JBTS with RP in the presented case of an individual carrying biallelic truncating variants in MKS1.


2019 ◽  
Vol 3 (11) ◽  
pp. 2151-2157
Author(s):  
Katherine I Wolf ◽  
Michelle F Jacobs ◽  
Rohit Mehra ◽  
Priya Begani ◽  
Matthew S Davenport ◽  
...  

Abstract At least 30% of all pheochromocytomas (PCCs)/paragangliomas (PGLs) arise in patients with a germline predisposition syndrome. Variants in succinate dehydrogenase subunits A, B, C, and D (SDHA, SDHB, SDHC, and SDHD) are the most common pathogenic germline alterations. Few pathogenic variants have been reported in succinate dehydrogenase assembly factor 2 (SDHAF2). Here, we describe a 30-year-old female patient who presented with a left-sided neck mass, which was later characterized as a carotid body PGL. Genetic testing revealed a likely pathogenic SDHAF2 variant (c.347G>A;p.W116X). Two sisters carried the same pathologic variant, and screening protocols were recommended. Whole-body MRI revealed thyroid nodules; this testing was followed by fine-needle aspiration, which confirmed papillary thyroid carcinoma in one sister and a follicular adenoma in the other. The two sisters then underwent hemithyroidectomy and total thyroidectomy, respectively. Because evidence for pathogenic variants in SDHAF2 causing predisposition to PCC/PGL is limited, we discuss the challenges in mutational variant interpretation and decision making regarding screening for associated tumors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lucie G. Hallenstein ◽  
Carol Sorensen ◽  
Lorraine Hodgson ◽  
Shelly Wen ◽  
Justin Westhuyzen ◽  
...  

Abstract Background Guidelines for referral to cancer genetics service for women diagnosed with triple negative breast cancer have changed over time. This study was conducted to assess the changing referral patterns and outcomes for women diagnosed with triple negative breast cancer across three regional cancer centres during the years 2014–2018. Methods Following ethical approval, a retrospective electronic medical record review was performed to identify those women diagnosed with triple negative breast cancer, and whether they were referred to a genetics service and if so, the outcome of that genetics assessment and/or genetic testing. Results There were 2441 women with newly diagnosed breast cancer seen at our cancer services during the years 2014–2018, of whom 237 women were diagnosed with triple negative breast cancer. Based on age of diagnosis criteria alone, 13% (31/237) of our cohort fulfilled criteria for genetic testing, with 81% (25/31) being referred to a cancer genetics service. Of this group 68% (21/31) were referred to genetics services within our regions and went on to have genetic testing with 10 pathogenic variants identified; 5x BRCA1, 4x BRCA2 and × 1 ATM:c.7271 T > G. Conclusions Referral pathways for women diagnosed with TNBC to cancer genetics services are performing well across our cancer centres. We identified a group of women who did not meet eligibility criteria for referral at their time of diagnosis, but would now be eligible, as guidelines have changed. The use of cross-discipline retrospective data reviews is a useful tool to identify patients who could benefit from being re-contacted over time for an updated cancer genetics assessment.


Sign in / Sign up

Export Citation Format

Share Document