scholarly journals Biallelic GINS2 variant p.(Arg114Leu) causes Meier-Gorlin syndrome with craniosynostosis

2021 ◽  
pp. jmedgenet-2020-107572
Author(s):  
Maria J Nabais Sá ◽  
Kerry A Miller ◽  
Mary McQuaid ◽  
Nils Koelling ◽  
Andrew O M Wilkie ◽  
...  

IntroductionReplication of the nuclear genome is an essential step for cell division. Pathogenic variants in genes coding for highly conserved components of the DNA replication machinery cause Meier-Gorlin syndrome (MGORS).ObjectiveIdentification of novel genes associated with MGORS.MethodsExome sequencing was performed to investigate the genotype of an individual presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. The analysis of the candidate variants employed bioinformatic tools, in silico structural protein analysis and modelling in budding yeast.ResultsA novel homozygous missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was identified. Both non-consanguineous healthy parents carried this variant. Bioinformatic analysis supports its classification as pathogenic. Functional analyses using yeast showed that this variant increases sensitivity to nicotinamide, a compound that interferes with DNA replication processes. The phylogenetically highly conserved residue p.Arg114 localises at the docking site of CDC45 and MCM5 at GINS2. Moreover, the missense change possibly disrupts the effective interaction between the GINS complex and CDC45, which is necessary for the CMG helicase complex (Cdc45/MCM2–7/GINS) to accurately operate. Interestingly, our patient’s phenotype is strikingly similar to the phenotype of patients with CDC45-related MGORS, particularly those with craniosynostosis, mild short stature and patellar hypoplasia.ConclusionGINS2 is a new disease-associated gene, expanding the genetic aetiology of MGORS.

2019 ◽  
Vol 57 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Karen M Knapp ◽  
Rosie Sullivan ◽  
Jennie Murray ◽  
Gregory Gimenez ◽  
Pamela Arn ◽  
...  

MaterialLinked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable.MethodsWe have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication.ResultsOur successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced.ConclusionVariants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-Xia Tang ◽  
Xiang-Shui Xiao ◽  
Kai Wang ◽  
Jie-Yuan Jin ◽  
Liang-Liang Fan ◽  
...  

Background. Cleft lip with or without cleft palate (CL/P) is the most common facial birth defect, with a worldwide incidence of 1 in 700-1000 live births. CL/P can be divided into syndromic CL/P (SCL/P) and nonsyndromic CL/P (NSCL/P). Genetic factors are an important component to the etiology of NSCL/P. ARHGAP29, one of the NSCL/P disease-causing genes, mediates the cyclical regulation of small GTP binding proteins such as RhoA and plays an essential role in cellular shape, proliferation, and craniofacial development. Methods. The present study investigated a Chinese family with NSCL/P and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatic analysis and prediction of variant pathogenicity. Cosegregation was subsequently conducted. Results. We identified a novel heterozygous missense variant of ARHGAP29 (c.2615C > T, p.A872V) in a Chinese pedigree with NSCL/P. Conclusion. We detected the disease-causing variant in this NSCL/P family. Our identification expands the genetic spectrum of ARHGAP29 and contributes to novel approaches to the genetic diagnosis and counseling of CL/P families.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Elisabeth A. Rosenthal ◽  
David R. Crosslin ◽  
Adam S. Gordon ◽  
David S. Carrell ◽  
Ian B. Stanaway ◽  
...  

Abstract Background Elevated triglycerides (TG) are associated with, and may be causal for, cardiovascular disease (CVD), and co-morbidities such as type II diabetes and metabolic syndrome. Pathogenic variants in APOA5 and APOC3 as well as risk SNVs in other genes [APOE (rs429358, rs7412), APOA1/C3/A4/A5 gene cluster (rs964184), INSR (rs7248104), CETP (rs7205804), GCKR (rs1260326)] have been shown to affect TG levels. Knowledge of genetic causes for elevated TG may lead to early intervention and targeted treatment for CVD. We previously identified linkage and association of a rare, highly conserved missense variant in SLC25A40, rs762174003, with hypertriglyceridemia (HTG) in a single large family, and replicated this association with rare, highly conserved missense variants in a European American and African American sample. Methods Here, we analyzed a longitudinal mixed-ancestry cohort (European, African and Asian ancestry, N = 8966) from the Electronic Medical Record and Genomics (eMERGE) Network. We tested associations between median TG and the genes of interest, using linear regression, adjusting for sex, median age, median BMI, and the first two principal components of ancestry. Results We replicated the association between TG and APOC3, APOA5, and risk variation at APOE, APOA1/C3/A4/A5 gene cluster, and GCKR. We failed to replicate the association between rare, highly conserved variation at SLC25A40 and TG, as well as for risk variation at INSR and CETP. Conclusions Analysis using data from electronic health records presents challenges that need to be overcome. Although large amounts of genotype data is becoming increasingly accessible, usable phenotype data can be challenging to obtain. We were able to replicate known, strong associations, but were unable to replicate moderate associations due to the limited sample size and missing drug information.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Giada Moresco ◽  
Jole Costanza ◽  
Carlo Santaniello ◽  
Ornella Rondinone ◽  
Federico Grilli ◽  
...  

Abstract Background De novo pathogenic variants in the DDX3X gene are reported to account for 1–3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. Case presentation We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. Conclusions This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chang Bao Xu ◽  
Xu Dong Zhou ◽  
Hong En Xu ◽  
Yong Li Zhao ◽  
Xing Hua Zhao ◽  
...  

Abstract Background Primary hyperoxaluria(PH)is a rare autosomal recessive genetic disease that contains three subtypes (PH1, PH2 and PH3). Approximately 80% of PH patients has been reported as subtype PH1, this subtype of PH has been related to a higher risk of renal failure at any age. Several genetic studies indicate that the variants in gene AGXT are responsible for the occurrence of PH1. However, the population heterogeneity of the variants in AGXT makes the genetic diagnosis of PH1 more challenging as it is hard to locate each specific variant. It is valuable to have a complete spectrum of AGXT variants from different population for early diagnosis and clinical treatments of PH1. Case presentation In this study, We performed high-throughput sequencing and genetic analysis of a 6-year-old male PH1 patient from a Chinese family. Two variants (c.346G > A: p.Gly116Arg; c.864G > A: p.Trp288X) of the gene AGXT were identified. We found a nonsense variant (c.864G > A: p.Trp288X) that comes from the proband’s mother and has never been reported previously. The other missense variant (c.346G > A: p.Gly116Arg) was inherited from his father and has been found previously in a domain of aminotransferase, which plays an important role in the function of AGT protein. Furthermore, we searched 110 pathogenic variants of AGXT that have been reported worldwide in healthy local Chinese population, none of these pathogenic variants was detected in the local genomes. Conclusions Our research provides an important diagnosis basis for PH1 on the genetic level by updating the genotype of PH1 and also develops a better understanding of the variants in AGXT by broadening the variation database of AGXT according to the Chinese reference genome.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 282
Author(s):  
Brais Bea-Mascato ◽  
Carlos Solarat ◽  
Irene Perea-Romero ◽  
Teresa Jaijo ◽  
Fiona Blanco-Kelly ◽  
...  

Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Eric Olinger ◽  
Intisar Al Alawi ◽  
Elisa Molinari ◽  
Eissa Ali Faqeih ◽  
Mohamed Al Hamed ◽  
...  

Abstract Background and Aims Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice and has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. Filtering of variants and scoring variants in terms of pathogenicity still represents a major challenge and may explain why ∼50% of patients remain without diagnosis after initial assessment. Method In this study, we performed WES to determine the genetic cause of a hepato-renal ciliopathy syndrome in a genetically unsolved consanguineous family from Oman with 2 affected children. For variants filtering and annotation Qiagen Clinical Insight tool was used. Database searches for identical alleles in patients with similar phenotypes were performed using Genomics England, UK Biobank and a Saudi Arabian cohort. RNA studies were used to confirm a splicing defect. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project and from UK Biobank, a major biomedical database. Results Initial bioinformatic analysis of WES data from 2 affected sibs excluded obvious pathogenic variants in known genes associated with primary ciliopathy syndromes with liver and kidney phenotypes. However, by manual curation of variants in candidate genes, a rare homozygous synonymous allele in NPHP3 was identified (c.2805C>T; p.(Gly935Gly)), mid-exon 20 and within a region of shared homozygosity on chromosome 3. Correct segregation was confirmed via Sanger sequencing in the parents and the 2 affected sibs. The variant was rare in gnomAD (2/251374 alleles) and was found heterozygously in just one individual within the UK Biobank cohort of 200,000 exomes. Using various in silico tools, the allele was shown to activate a cryptic splice donor site in the middle of exon 20. RT-PCR with sequencing of parental whole blood RNA confirmed alternative splicing leading to frameshift p.Gly935GlyfsTer47. The identical homozygous allele was identified in 2 additional unsolved families within the Genomics England 100,000 Genomes Project and in 1 Saudi Arabian family with similar hepato-renal phenotypes. Conclusion This study shows that automated filtering of WES data may exclude synonymous variants which are pathogenic, especially if they are mid-exon. Here we identified a recurrent synonymous NPHP3 variant leading to a splice defect as the cause of a hepato-renal ciliopathy phenotype in four families. In unsolved cases, rare synonymous alleles in candidate genes need to be reassessed for impact on RNA splicing and possible pathogenicity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meng Yuan ◽  
Yi Guo ◽  
Hong Xia ◽  
Hongbo Xu ◽  
Hao Deng ◽  
...  

Brugada syndrome (BrS) is a complexly genetically patterned, rare, malignant, life-threatening arrhythmia disorder. It is autosomal dominant in most cases and characterized by identifiable electrocardiographic patterns, recurrent syncope, nocturnal agonal respiration, and other symptoms, including sudden cardiac death. Over the last 2 decades, a great number of variants have been identified in more than 36 pathogenic or susceptibility genes associated with BrS. The present study used the combined method of whole exome sequencing and Sanger sequencing to identify pathogenic variants in two unrelated Han-Chinese patients with clinically suspected BrS. Minigene splicing assay was used to evaluate the effects of the splicing variant. A novel heterozygous splicing variant c.2437-2A>C in the sodium voltage-gated channel alpha subunit 5 gene (SCN5A) and a novel heterozygous missense variant c.161A>T [p.(Asp54Val)] in the glycerol-3-phosphate dehydrogenase 1 like gene (GPD1L) were identified in these two patients with BrS-1 and possible BrS-2, respectively. Minigene splicing assay indicated the deletion of 15 and 141 nucleotides in exon 16, resulting in critical amino acid deletions. These findings expand the variant spectrum of SCN5A and GPD1L, which can be beneficial to genetic counseling and prenatal diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lulu Yan ◽  
Ru Shen ◽  
Zongfu Cao ◽  
Chunxiao Han ◽  
Yuxin Zhang ◽  
...  

PPP2R5D-related neurodevelopmental disorder, which is mainly caused by de novo missense variants in the PPP2R5D gene, is a rare autosomal dominant genetic disorder with about 100 patients and a total of thirteen pathogenic variants known to exist globally so far. Here, we present a 24-month-old Chinese boy with developmental delay and other common clinical characteristics of PPP2R5D-related neurodevelopmental disorder including hypotonia, macrocephaly, intellectual disability, speech impairment, and behavioral abnormality. Trio-whole exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variant. The pathogenicity of the variant was evaluated using bioinformatics tools. We identified a novel pathogenic variant in the PPP2R5D gene (c.620G>T, p.Trp207Leu). The variant is located in the variant hotspot region of this gene and is predicted to cause PPP2R5D protein dysfunction due to an increase in local hydrophobicity and unstable three-dimensional structure. We report a novel pathogenic variant of PPP2R5D associated with PPP2R5D-related neurodevelopmental disorder from a Chinese family. Our findings expanded the phenotypic and mutational spectrum of PPP2R5D-related neurodevelopmental disorder.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 792 ◽  
Author(s):  
Claudia Strafella ◽  
Valerio Caputo ◽  
Giulia Pagliaroli ◽  
Nicola Iozzo ◽  
Giulia Campoli ◽  
...  

This work describes the application of NGS for molecular diagnosis of RP in a family with a history of severe hypovision. In particular, the proband received a clinical diagnosis of RP on the basis of medical, instrumental examinations and his family history. The proband was subjected to NGS, utilizing a customized panel including 24 genes associated with RP and other retinal dystrophies. The NGS analysis revealed a novel missense variant (c.668T > A, I223N) in PRPH2 gene, which was investigated by segregation and bioinformatic analysis. The variant is located in the D2 loop domain of PRPH2, which is critical for protein activity. Bioinformatic analysis described the c.668T > A as a likely pathogenic variant. Moreover, a 3D model prediction was performed to better characterize the impact of the variant on the protein, reporting a disruption of the α-helical structures. As a result, the variant protein showed a substantially different conformation with respect to the wild-type PRPH2. The identified variant may therefore affect the oligomerization ability of the D2 loop and, ultimately, hamper PRPH2 proper functioning and localization. In conclusion, PRPH2_c.668T > A provided a molecular explanation of RP symptomatology, highlighting the clinical utility of NGS panels to facilitate genotype–phenotype correlations.


Sign in / Sign up

Export Citation Format

Share Document