Genotype-phenotype correlation in clubfoot (talipes equinovarus)

2021 ◽  
pp. jmedgenet-2021-108040
Author(s):  
Ewa Hordyjewska-Kowalczyk ◽  
Karol Nowosad ◽  
Aleksander Jamsheer ◽  
Przemko Tylzanowski

Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot—the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.

2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 4585-4585
Author(s):  
Bassel Nazha ◽  
Hiba I. Dada ◽  
Leylah Drusbosky ◽  
Jacqueline T Brown ◽  
Deepak Ravindranathan ◽  
...  

4585 Background: Adrenocortical Carcinoma (ACC) is a rare and aggressive malignancy with poor prognosis and limited treatments in the advanced setting. Molecular pathways with tumor suppressor genes (e.g. TP53, CDKN2A) and oncogenes (e.g. CTNNB1 and RAS) are implicated in oncogenesis. To our knowledge, the genomic landscape of ctDNA alterations for ACC has not been described in a large cohort. We report plasma-based ctDNA alterations in patients with advanced ACC. Methods: We retrospectively evaluated genomic data from 102 patients with ACC who had ctDNA testing between 12/2016 – 10/2020 using Guardant360 (Guardant Health, CA). ctDNA analysis interrogated single nucleotide variants (SNV), fusions, indels and copy number variations (CNV) of up to 83 genes. We evaluated the frequency of genomic alterations, the landscape of co-occurring mutations, and pathogenic or likely pathogenic alterations with potential targeted therapies. The prevalence of alterations identified in ctDNA were compared to those detected in tissue using a publicly available database (cBioPortal). Results: The median age was 54 years (range 24-81), and 55% of patients were male. Among the entire cohort, 84 pts (82.4%) had ≥1 somatic alteration detected. Mutations were most frequently detected in TP53 (52%), EGFR (23%), CTNNB1 (18%), MET (18%), and ATM (14%). The frequencies detected in ctDNA were similar to the results detected in tissue. Pathogenic and/or likely pathogenic mutations in therapeutically relevant alterations were observed in 36 patients (35%), including EGFR, BRAF, MET, CDKN2A, and CDK4/6 (Table 1). The most frequently co-occurring mutations were EGFR + TP53 (14%), EGFR + MET (11%), BRAF + MET (10%). Conclusions: Blood-based ctDNA profiling in advanced ACC provided comprehensive genomic data in most patients, with a similar profile to tumor tissue analyses. Over one third of patients had actionable mutations with approved therapies in other cancers. This approach might inform the development of personalized treatment options for this aggressive malignancy.[Table: see text]


Epigenomics ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 1633-1650
Author(s):  
Xi Xu ◽  
Chaoju Gong ◽  
Yunfeng Wang ◽  
Yanyan Hu ◽  
Hong Liu ◽  
...  

Aim: We aim to identify driving genes of colorectal cancer (CRC) through multi-omics analysis. Materials & methods: We downloaded multi-omics data of CRC from The Cancer Genome Atlas dataset. Integrative analysis of single-nucleotide variants, copy number variations, DNA methylation and differentially expressed genes identified candidate genes that carry CRC risk. Kernal genes were extracted from the weighted gene co-expression network analysis. A competing endogenous RNA network composed of CRC-related genes was constructed. Biological roles of genes were further investigated in vitro. Results: We identified LRRC26 and REP15 as novel prognosis-related driving genes for CRC. LRRC26 hindered tumorigenesis of CRC in vitro. Conclusion: Our study identified novel driving genes and may provide new insights into the molecular mechanisms of CRC.


2020 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Adrián Montaño ◽  
Jesús Hernández-Sánchez ◽  
Maribel Forero-Castro ◽  
María Matorra-Miguel ◽  
Eva Lumbreras ◽  
...  

Background: B-acute lymphoblastic leukemia (B-ALL) is a hematological neoplasm of the stem lymphoid cell of the B lineage, characterized by the presence of genetic alterations closely related to the course of the disease. The number of alterations identified in these patients grows as studies of the disease progress, but in clinical practice, the conventional techniques frequently used are only capable of detecting the most common alterations. However, techniques, such as next-generation sequencing (NGS), are being implemented to detect a wide spectrum of new alterations that also include point mutations. Methods: In this study, we designed and validated a comprehensive custom NGS panel to detect the main genetic alterations present in the disease in a single step. For this purpose, 75 B-ALL diagnosis samples from patients previously characterized by standard-of-care diagnostic techniques were sequenced. Results: The use of the custom NGS panel allowed the correct detection of the main genetic alterations present in B-ALL patients, including the presence of an aneuploid clone in 14 of the samples and some of the recurrent fusion genes in 35 of the samples. The panel was also able to successfully detect a number of secondary alterations, such as single nucleotide variants (SNVs) and copy number variations (CNVs) in 66 and 46 of the samples analyzed, respectively, allowing for further refinement of the stratification of patients. The custom NGS panel could also detect alterations with a high level of sensitivity and reproducibility when the findings obtained by NGS were compared with those obtained from other conventional techniques. Conclusions: The use of this custom NGS panel allows us to quickly and efficiently detect the main genetic alterations present in B-ALL patients in a single assay (SNVs and insertions/deletions (INDELs), recurrent fusion genes, CNVs, aneuploidies, and single nucleotide polymorphisms (SNPs) associated with pharmacogenetics). The application of this panel would thus allow us to speed up and simplify the molecular diagnosis of patients, helping patient stratification and management.


2020 ◽  
Author(s):  
Vincent Sater ◽  
Pierre-Julien Viailly ◽  
Thierry Lecroq ◽  
Philippe Ruminy ◽  
Caroline Bérard ◽  
...  

AbstractMotivationWith Next Generation Sequencing becoming more affordable every year, NGS technologies asserted themselves as the fastest and most reliable way to detect Single Nucleotide Variants (SNV) and Copy Number Variations (CNV) in cancer patients. These technologies can be used to sequence DNA at very high depths thus allowing to detect abnormalities in tumor cells with very low frequencies. A lot of different variant callers are publicly available and usually do a good job at calling out variants. However, when frequencies begin to drop under 1%, the specificity of these tools suffers greatly as true variants at very low frequencies can be easily confused with sequencing or PCR artifacts. The recent use of Unique Molecular Identifiers (UMI) in NGS experiments offered a way to accurately separate true variants from artifacts. UMI-based variant callers are slowly replacing raw-reads based variant callers as the standard method for an accurate detection of variants at very low frequencies. However, benchmarking done in the tools publication are usually realized on real biological data in which real variants are not known, making it difficult to assess their accuracy.ResultsWe present UMI-Gen, a UMI-based reads simulator for targeted sequencing paired-end data. UMI-Gen generates reference reads covering the targeted regions at a user customizable depth. After that, using a number of control files, it estimates the background error rate at each position and then modifies the generated reads to mimic real biological data. Finally, it will insert real variants in the reads from a list provided by the user.AvailabilityThe entire pipeline is available at https://gitlab.com/vincent-sater/umigen-master under MIT [email protected]


2020 ◽  
Author(s):  
Eric Yu ◽  
Uladzislau Rudakov ◽  
Lynne Krohn ◽  
Kheireddin Mufti ◽  
Jennifer A. Ruskey ◽  
...  

AbstractImportanceBiallelic PRKN mutation carriers with Parkinson’s disease (PD) typically have an earlier disease onset, slow disease progression and, often, different neuropathology compared to sporadic patients. However, the role of heterozygous PRKN variants in the risk of PD remains unclear.ObjectiveTo examine the association between heterozygous PRKN variants, including single nucleotide variants and copy number variations (CNVs), and PD status.DesignThis case-control study was conducted in Canada using data from 4 centers in Canada, France, the United States and Israel, collected between 2013 and 2020.SettingMulticenter, population matched, unrelated participants.ParticipantsPD patients were compared with healthy controls. Participants were excluded if genetic data quality was poor, PRKN variants were biallelic, or relatedness was discovered. In total, 2,807 patients and 3,627 controls were recruited for the study. Data analyses were performed from January 2019 to March 2020.ExposureInheritance of heterozygous PRKN variants.Main Outcome(s) and Measure(s)PD was diagnosed by movement disorder specialists according to the UK Brain Bank Criteria or the Movement Disorder Society criteria. Targeted next-generation sequencing with molecular inversion probes and multiplex ligation-dependent probe amplification were used to detect rare variants and CNVs. These variants were examined with optimized sequence kernel association tests after accounting for potential pathogenicity. P values of optimized sequence kernel association tests between heterozygous PRKN variants and PD were measured.ResultsDNA of all participants were sequenced, including 1,903 late onset (mean [SD], 64.02±7.81 years, 1,196 men [63%]) and 542 early onset patients (mean [SD], 43.30±6.60, 368 men [68%]). Age at onset was not available for 349 patients. Carriers of two PRKN variants were excluded from the analysis. No associations were found between heterozygous variants and risk of PD. Pathogenic and likely pathogenic heterozygous variants and CNVs were less common among PD patients (1.0%) than among controls (1.3%).Conclusion and RelevanceThis study suggests that heterozygous variants and CNVs in PRKN are not associated with PD. Molecular inversion probes allow for rapid and cost-effective detection of all types of PRKN variants, which may be useful for pre-trial screening and for clinical and basic science studies specifically targeting PRKN patients.Key PointsQuestionAre rare heterozygous PRKN single nucleotide variants and copy number variations associated with Parkinson’s disease?FindingsIn this case-controls study including 2,807 patients and 3,627 controls, we found no significant association between rare heterozygous PRKN variants and risk of Parkinson’s disease.MeaningPRKN-associated parkinsonism is an autosomal recessive Mendelian disease, and based on our data, heterozygous carriers are not likely to be at increased risk of Parkinson’s disease.


2017 ◽  
Vol 2 (2) ◽  
pp. 137-143 ◽  
Author(s):  
Caspar Grond-Ginsbach ◽  
Tobias Brandt ◽  
Manja Kloss ◽  
Suna Su Aksay ◽  
Philipp Lyrer ◽  
...  

Background The cause of cervical artery dissection is not well understood. We test the hypothesis that mutations in genes associated with known arterial connective tissue disorders are enriched in patients with familial cervical artery dissection. Patients and methods Patient duos from nine pedigrees with familial cervical artery dissection were analyzed by whole exome sequencing. Single nucleotide variants in a panel of 11 candidate genes (ACTA2, MYH11, FBN1, TGFBR1, TGFBR2, TGFB2, COL3A1, COL4A1, SMAD3, MYLK and SLC2A10) were prioritized according to functionality (stop-loss, nonsense, and missense variants with polyphen-2 score ≥0.95). Variants classified as “benign” or “likely benign” in the ClinVar database were excluded from further analysis. For comparison, non-benign stop-loss, nonsense and missense variants with polyphen-2 score ≥0.95 in the same panel of candidate genes were identified in the European non-Finnish population of the ExAC database ( n = 33,370). Results Non-benign Single nucleotide variants in both affected patients were identified in four of the nine cervical artery dissection families (COL3A1; Gly324Ser, FBN1: Arg2554Trp, COL4A1: Pro116Leu, and TGFBR2: Ala292Thr) yielding an allele frequency of 22.2% (4/18). In the comparison group, 1782 variants were present in 33,370 subjects from the ExAC database (allele frequency: 1782/66,740 = 2.7%; p = 0.0008; odds ratio = 14.2; 95% confidence interval = 3.8–52.9). Conclusion Cervical artery dissection families showed enrichment for non-benign variants in genes associated with arterial connective tissue disorders. The observation that findings differed across families indicates genetic heterogeneity of familial cervical artery dissection.


Sign in / Sign up

Export Citation Format

Share Document