scholarly journals Out of date: genetics, history and the British novel of the 1990s

2021 ◽  
pp. medhum-2020-012022
Author(s):  
Natalie Riley

This article examines the representation of human genomics in the British historical novel of the 1990s. A form which meditates on the past and its relationship to the present, the historical novel readily lends itself to the exploration of genealogy, heredity and inheritance. Forwarding an understanding of human history, and particularly of family history, as a direct and causal function of the genes, the neo-Darwinian explanation of the genome popular in the 1990s similarly advanced its own teleological relationship between past and present. Reading Jenny Diski’s Monkey’s Uncle (1994), A S Byatt’s Babel Tower (1996) and Zadie Smith’s White Teeth (2000), this essay argues that the historical novel provides a unique form with which to critique the deterministic view of heredity promoted by neo-Darwinism. Focusing on moments of textual anachronism, asynchronicity and repetition in these family sagas, it shows how—at its most transgressive—the historical novel imagines temporal disruptions that bring the present into contact with the past in ways that defamiliarise conventions of linearity, order and progress. Refusing the idea of human history as a single, legible line that underpins neo-Darwinian ideas of genetic inheritance, Diski, Byatt and Smith’s novels are able to interrogate both the temporal logics and cultural capital of 1990s genetic science. While the decade was shaped and defined by popular science speculation and large-scale genetic research projects, such as the Human Genome Project (1990–2003), the novels addressed in this essay ultimately suggest the lively and seductive genocentrism of the 1990s to be inadequate to the task of explaining the complexity and meaning of the lived genome. As Diski, Byatt and Smith’s novels anticipate, the question of the uses, meanings and value of the human genome sequence continue to be of relevance within our current, postgenomic era.

1996 ◽  
Vol 27 (2) ◽  
pp. 3-7
Author(s):  
Rick Houser ◽  
Marilyn Lash

Technological and medical advances have been dramatic over the past several years; particularly impressive have been advances in biotechnology and genetic research. The implications of genetic research as they relate to persons with disabilities are discussed. Additionally, historical and current problems with the use of genetic information are addressed. Finally, the role rehabilitation counselors can play as advocates for people with disabilities in the implementation of research results from the Human Genome Project is presented.


2008 ◽  
Vol 36 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Jennifer A. Hamilton

In 2000, researchers from the Human Genome Project (HGP) proclaimed that the initial sequencing of the human genome definitively proved, among other things, that there was no genetic basis for race. The genetic fact that most humans were 99.9% the same at the level of their DNA was widely heralded and circulated in the English-speaking press, especially in the United States. This pronouncement seemed proof that long-term antiracist efforts to de-biologize race were legitimized by scientific findings. Yet, despite the seemingly widespread acceptance of the social construction of race, post-HGP genetic science has seen a substantial shift toward the use of race variables in genetic research and, according to a number of prominent scholars, is re-invoking the specter of earlier forms of racial science in some rather discomfiting ways. During the past seven years, the main thrust of human genetic research, especially in the realm of biomedicine, has shifted from a concern with the 99.9% of the shared genome — what is thought to make humans alike — towards an explicit focus on the 0.1% that constitutes human genetic variation. Here I briefly explore some of the potential implications of the conceptualization and practice of early 21st century genetic variation research, especially as it relates to questions of race.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1968 ◽  
Author(s):  
Roderic Guigo ◽  
Michiel de Hoon

At the beginning of this century, the Human Genome Project produced the first drafts of the human genome sequence. Following this, large-scale functional genomics studies were initiated to understand the molecular basis underlying the translation of the instructions encoded in the genome into the biological traits of organisms. Instrumental in the ensuing revolution in functional genomics were the rapid advances in massively parallel sequencing technologies as well as the development of a wide diversity of protocols that make use of these technologies to understand cellular behavior at the molecular level. Here, we review recent advances in functional genomic methods, discuss some of their current capabilities and limitations, and briefly sketch future directions within the field.


2015 ◽  
Vol 9 (2) ◽  
pp. 306-326 ◽  
Author(s):  
Allan Megill

In recent years David Christian and others have promoted “Big History” as an innovative approach to the study of the past. The present paper juxtaposes to Big History an old Big History, namely, the tradition of “universal history” that flourished in Europe from the mid-sixteenth century until well into the nineteenth century. The claim to universality of works in that tradition depended on the assumed truth of Christianity, a fact that was fully acknowledged by the tradition’s adherents. The claim of the new Big History to universality likewise depends on prior assumptions. Simply stated, in its various manifestations the “new” Big History is rooted either in a continuing theology, or in a form of materialism that is assumed to be determinative of human history, or in a somewhat contradictory amalgam of the two. The present paper suggests that “largest-scale history” as exemplified in the old and new Big Histories is less a contribution to historical knowledge than it is a narrativization of one or another worldview. Distinguishing between largest-scale history and history that is “merely” large-scale, the paper also suggests that a better approach to meeting the desire for large scale in historical writing is through more modest endeavors, such as large-scale comparative history, network and exchange history, thematic history, and history of modernization.


Author(s):  
Debra J. H. Mathews

Public health genetics (more commonly referred to as “community genetics” in Europe) has been practiced to some degree in the West since at least the 1960s, but the development of a cohesive field took time and advances in technology. The application of genetics and genomics to prevent disease and promote public health became firmly established as a field in the late 1990s, as large-scale sequencing of the human genome as part of the Human Genome Project began. The field is now thriving, leading to both tremendous public health benefits and risks for both individuals and populations. This chapter provides an overview of the section of The Oxford Handbook of Public Health Ethics dedicated to public health genetics. The chapters roughly trace the evolution of public health genetics from its roots in eugenics, to the present challenges faced in newborn screening and biobanking, and finally to emerging questions raised by the application of genomics to infectious disease.


2021 ◽  
pp. 13-36
Author(s):  
Christopher L. Cummings ◽  
Kaitlin M. Volk ◽  
Anna A. Ulanova ◽  
Do Thuy Uyen Ha Lam ◽  
Pei Rou Ng

AbstractThe field of biotechnology has been rigorously researched and applied to many facets of everyday life. Biotechnology is defined as the process of modifying an organism or a biological system for an intended purpose. Biotechnology applications range from agricultural crop selection to pharmaceutical and genetic processes (Bauer and Gaskell 2002). The definition, however, is evolving with recent scientific advancements. Until World War II, biotechnology was primarily siloed in agricultural biology and chemical engineering. The results of this era included disease-resistant crops, pesticides, and other pest-controlling tools (Verma et al. 2011). After WWII, biotechnology began to shift domains when advanced research on human genetics and DNA started. In 1984, the Human Genome Project (HGP) was formerly proposed, which initiated the pursuit to decode the human genome by the private and academic sectors. The legacy of the project gave rise to ancillary advancements in data sharing and open-source software, and solidified the prominence of “big science;” solidifying capital-intensive large-scale private-public research initiatives that were once primarily under the purview of government-funded programs (Hood and Rowen 2013). After the HGP, the biotechnology industry boomed as a result of dramatic cost reduction to DNA sequencing processes. In 2019 the industry was globally estimated to be worth $449.06 billion and is projected to increase in value (Polaris 2020).


Sign in / Sign up

Export Citation Format

Share Document