scholarly journals Mycobacterium tuberculosis DNA facilitates selective autophagy within infected macrophages

Thorax ◽  
2012 ◽  
Vol 68 (9) ◽  
pp. 895-895 ◽  
Author(s):  
Rawya Ahmed
2020 ◽  
Author(s):  
Samantha L. Bell ◽  
Kayla L. Lopez ◽  
Jeffery S. Cox ◽  
Kristin L. Patrick ◽  
Robert O. Watson

ABSTRACTMycobacterium tuberculosis (Mtb) infects a quarter of the world and causes the deadliest infectious disease worldwide. Upon infection, Mtb is phagocytosed by macrophages and uses its virulence-associated ESX-1 secretion system to modulate the host cell and establish a replicative niche. We have previously shown the ESX-1 secretion system permeabilizes the Mtb-containing phagosome and that a population (~30%) of intracellular Mtb are recognized within the cytosol, tagged with ubiquitin, and targeted to the selective autophagy pathway. Despite the importance of selective autophagy in controlling infection, the mechanisms through which macrophages sense and respond to damaged Mtb-containing phagosomes remains unclear. Here, we demonstrate that several cytosolic glycan-binding proteins, known as galectins, recognize Mtb-containing phagosomes. We found that galectins-3, -8, and -9 are all recruited to the same Mtb population that colocalizes with selective autophagy markers like ubiquitin, p62, and LC3, which indicates Mtb damages its phagosomal membrane such that cytosolic host sensors can recognize danger signals in the lumen. To determine which galectins are required for controlling Mtb replication in macrophages, we generated CRISPR/Cas9 knockout macrophages lacking individual or multiple galectins and found that galectin-8-/- and galectin-3/8/9-/- knockout macrophages were similarly defective in targeting Mtb to selective autophagy and controlling replication, suggesting galectin-8 plays a privileged role in anti-Mtb autophagy. In investigating this specificity, we identified a novel and specific interaction between galectin-8 and TAX1BP1, one of several autophagy adaptors that bridges cargo and LC3 during the course of autophagosome formation, and this galectin-8/TAX1BP1 interaction was necessary to efficiently target Mtb to selective autophagy. Remarkably, overexpressing individual galectins increased targeting of Mtb to antibacterial autophagy and limited Mtb replication. Taken together, these data imply that galectins recognize damaged Mtb-containing phagosomes, recruit downstream autophagy machinery, and may represent promising targets for host-directed therapeutics to treat Mtb.


mBio ◽  
2021 ◽  
Author(s):  
Samantha L. Bell ◽  
Kayla L. Lopez ◽  
Jeffery S. Cox ◽  
Kristin L. Patrick ◽  
Robert O. Watson

Mycobacterium tuberculosis (Mtb) infects one-quarter of the global population and causes one of the deadliest infectious diseases worldwide. Macrophages are the first line of defense against Mtb infection and are typically incredibly efficient at destroying intracellular pathogens, but Mtb has evolved to survive and replicate in this harsh environment.


2017 ◽  
Vol 21 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Luis H. Franco ◽  
Vidhya R. Nair ◽  
Caitlyn R. Scharn ◽  
Ramnik J. Xavier ◽  
Jose R. Torrealba ◽  
...  

2017 ◽  
Vol 22 (3) ◽  
pp. 421-423 ◽  
Author(s):  
Luis H. Franco ◽  
Vidhya R. Nair ◽  
Caitlyn R. Scharn ◽  
Ramnik J. Xavier ◽  
Jose R. Torrealba ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Robin Smyth ◽  
Stefania Berton ◽  
Nusrah Rajabalee ◽  
Therese Chan ◽  
Jim Sun

Tuberculosis (TB) is a deadly infectious lung disease caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). The identification of macrophage signaling proteins exploited by Mtb during infection will enable the development of alternative host-directed therapies (HDT) for TB. HDT strategies will boost host immunity to restrict the intracellular replication of Mtb and therefore hold promise to overcome antimicrobial resistance, a growing crisis in TB therapy. Protein Kinase R (PKR) is a key host sensor that functions in the cellular antiviral response. However, its role in defense against intracellular bacterial pathogens is not clearly defined. Herein, we demonstrate that expression and activation of PKR is upregulated in macrophages infected with Mtb. Immunological profiling of human THP-1 macrophages that overexpress PKR (THP-PKR) showed increased production of IP-10 and reduced production of IL-6, two cytokines that are reported to activate and inhibit IFNγ-dependent autophagy, respectively. Indeed, sustained expression and activation of PKR reduced the intracellular survival of Mtb, an effect that could be enhanced by IFNγ treatment. We further demonstrate that the enhanced anti-mycobacterial activity of THP-PKR macrophages is mediated by a mechanism dependent on selective autophagy, as indicated by increased levels of LC3B-II that colocalize with intracellular Mtb. Consistent with this mechanism, inhibition of autophagolysosome maturation with bafilomycin A1 abrogated the ability of THP-PKR macrophages to limit replication of Mtb, whereas pharmacological activation of autophagy enhanced the anti-mycobacterial effect of PKR overexpression. As such, PKR represents a novel and attractive host target for development of HDT for TB, and our data suggest value in the design of more specific and potent activators of PKR.


Sign in / Sign up

Export Citation Format

Share Document