tlr7 stimulation
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna E. Spiering ◽  
Teun J. de Vries

A male sex bias has emerged in the COVID-19 pandemic, fitting to the sex-biased pattern in other viral infections. Males are 2.84 times more often admitted to the ICU and mortality is 1.39 times higher as a result of COVID-19. Various factors play a role in this, and novel studies suggest that the gene-dose of Toll-Like Receptor (TLR) 7 could contribute to the sex-skewed severity. TLR7 is one of the crucial pattern recognition receptors for SARS-CoV-2 ssRNA and the gene-dose effect is caused by X chromosome inactivation (XCI) escape. Female immune cells with TLR7 XCI escape have biallelic TLR7 expression and produce more type 1 interferon (IFN) upon TLR7 stimulation. In COVID-19, TLR7 in plasmacytoid dendritic cells is one of the pattern recognition receptors responsible for IFN production and a delayed IFN response has been associated with immunopathogenesis and mortality. Here, we provide a hypothesis that females may be protected to some extend against severe COVID-19, due to the biallelic TLR7 expression, allowing them to mount a stronger and more protective IFN response early after infection. Studies exploring COVID-19 treatment via the TLR7-mediated IFN pathway should consider this sex difference. Various factors such as age, sex hormones and escape modulation remain to be investigated concerning the TLR7 gene-dose effect.


2021 ◽  
Author(s):  
Claire Cenac ◽  
Mariette Ducatez ◽  
Jean-Charles Guery

Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. Proteolytic cleavage of TLR7 protein is required for its functional maturation in the endosomal compartment. Structural studies demonstrated that the N- and C-terminal domains of TLR7 are connected and involved in ligand binding after cleavage. Hydroxychloroquine (HCQ), an antimalarial drug, has been studied for its antiviral effects. HCQ increases pH in acidic organelles and has been reported to potently inhibit endosomal TLR activation. Whether HCQ can prevent endogenous TLR7 cleavage in primary immune cells, such as plasmacytoid dendritic cells (pDCs), had never been examined. Here, using a validated anti-TLR7 antibody suitable for biochemical detection of native TLR7 protein, we show that HCQ-treatment of fresh PBMCs, CAL-1 leukemic and primary human pDCs inhibits TLR7 cleavage and results in accumulation of full-length protein. As a consequence, we observe an inhibition of pDC activation in response to TLR7 stimulation with synthetic ligands and viruses including inactivated SARS-CoV2, which we show herein activates pDCs through TLR7-signaling. Together, our finding suggests that the major pathway by which HCQ inhibits ssRNA-sensing by pDCs may rely on its capacity to inhibit endosomal acidification and the functional maturation of TLR7 protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jean-Charles Guéry

Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) during HIV-1 infection in response to TLR7 stimulation. However, IFN-I-signaling has been shown to play opposite effects in HIV-1 and SIV infection. TLR7-driven type I interferon production in pDCs is higher in women than in men due to the cell-intrinsic actions of estrogen and X-chromosome complement. Indeed, TLR7 is encoded on the X-chromosome, and the TLR7 gene escapes the X-chromosome inactivation in immune cells of women which express significantly higher levels of TLR7 protein than male cells. Following HIV infection, women have a lower viremia during acute infection and exhibit stronger antiviral responses than men, which has been attributed to the increased capacity of female pDCs to produce IFN-α upon TLR7-stimulation. However, a deleterious functional impact of an excessive TLR7 response on acute viremia in women has been recently revealed by the analysis of the frequent rs179008 c.32A>T SNP of TLR7. This SNP was identified as a sex-specific protein abundance quantitative trait locus (pQTL) causing a difference in the TLR7 protein dosage and effector function in females only. T allele expression was associated with a lower TLR7 protein synthesis, blunted production of IFN-α by pDCs upon TLR7 stimulation, and an unexpectedly lower viral load during primary HIV-1 infection in women. In the present review, the author will revisit the role of TLR7-driven pDC innate function in the context of HIV-1 infection to discuss at what stage of primary HIV-1 infection the TLR7 rs179008 T allele is likely to be protective in women.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251187
Author(s):  
Teresa Poderoso ◽  
Paloma Martínez De la Riva ◽  
Belén Álvarez ◽  
Ángel Ezquerra ◽  
Javier Domínguez ◽  
...  

The CD200R family comprises a group of paired receptors that can modulate the activation of immune cells. They are expressed both on myeloid cells and lymphocyte subsets. Here we report that the expression of these receptors on porcine B cells is tightly regulated, being mainly expressed on mature cells. The expression of the inhibitory receptors CD200R1 and/or its splicing variant CD200R1X2, either in combination or not with the activating receptor CD200R1L, is upregulated in sIgM+ effector/memory cells, and tends to decline thereafter as these cells progress to plasmablasts or switch the Ig isotype. sIgM+ naïve and primed cells only express, by contrast, the CD200R1X2 receptor. B-1 like cells also express CD200R1 isoforms, either alone or in combination with CD200R1L. Treatment of peripheral blood mononuclear cells with a monoclonal antibody specific for inhibitory receptors, enhances the IgM and IgG production induced by TLR7 stimulation suggesting a modulatory role of B cell functions of these receptors.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jaba Gamrekelashvili ◽  
Tamar Kapanadze ◽  
Stefan Sablotny ◽  
Corina Ratiu ◽  
Khaled Dastagir ◽  
...  

Conventional Ly6Chi monocytes have developmental plasticity for a spectrum of differentiated phagocytes. Here we show, using conditional deletion strategies in a mouse model of Toll-like receptor (TLR) 7-induced inflammation, that the spectrum of developmental cell fates of Ly6Chi monocytes, and the resultant inflammation, is coordinately regulated by TLR and Notch signaling. Cell-intrinsic Notch2 and TLR7-Myd88 pathways independently and synergistically promote Ly6Clo patrolling monocyte development from Ly6Chi monocytes under inflammatory conditions, while impairment in either signaling axis impairs Ly6Clo monocyte development. At the same time, TLR7 stimulation in the absence of functional Notch2 signaling promotes resident tissue macrophage gene expression signatures in monocytes in the blood and ectopic differentiation of Ly6Chi monocytes into macrophages and dendritic cells, which infiltrate the spleen and major blood vessels and are accompanied by aberrant systemic inflammation. Thus, Notch2 is a master regulator of Ly6Chi monocyte cell fate and inflammation in response to TLR signaling.


2019 ◽  
Vol 7 (10) ◽  
pp. 1714-1726 ◽  
Author(s):  
Jayanth S. Shankara Narayanan ◽  
Partha Ray ◽  
Tomoko Hayashi ◽  
Thomas C. Whisenant ◽  
Diego Vicente ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 92 ◽  
Author(s):  
Isabel Freund ◽  
Tatjana Eigenbrod ◽  
Mark Helm ◽  
Alexander Dalpke

Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.


2018 ◽  
Vol 96 (10) ◽  
pp. 1083-1094 ◽  
Author(s):  
Casper Marsman ◽  
Fanny Lafouresse ◽  
Yang Liao ◽  
Tracey M Baldwin ◽  
Lisa A Mielke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document