scholarly journals Cost-effectiveness of positive airway pressure modalities in obesity hypoventilation syndrome with severe obstructive sleep apnoea

Thorax ◽  
2020 ◽  
Vol 75 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Juan F Masa ◽  
Babak Mokhlesi ◽  
Iván Benítez ◽  
Francisco Javier Gómez de Terreros Caro ◽  
M-Ángeles Sánchez-Quiroga ◽  
...  

BackgroundObesity hypoventilation syndrome (OHS) is treated with either non-invasive ventilation (NIV) or CPAP, but there are no long-term cost-effectiveness studies comparing the two treatment modalities.ObjectivesWe performed a large, multicentre, randomised, open-label controlled study to determine the comparative long-term cost and effectiveness of NIV versus CPAP in patients with OHS with severe obstructive sleep apnoea (OSA) using hospitalisation days as the primary outcome measure.MethodsHospital resource utilisation and within trial costs were evaluated against the difference in effectiveness based on the primary outcome (hospitalisation days/year, transformed and non-transformed in monetary term). Costs and effectiveness were estimated from a log-normal distribution using a Bayesian approach. A secondary analysis by adherence subgroups was performed.ResultsIn total, 363 patients were selected, 215 were randomised and 202 were available for the analysis. The median (IQR) follow-up was 3.01 (2.91–3.14) years for NIV group and 3.00 (2.92–3.17) years for CPAP. The mean (SD) Bayesian estimated hospital days was 2.13 (0.73) for CPAP and 1.89 (0.78) for NIV. The mean (SD) Bayesian estimated cost per patient/year in the NIV arm, excluding hospitalisation costs, was €2075.98 (91.6), which was higher than the cost in the CPAP arm of €1219.06 (52.3); mean difference €857.6 (105.5). CPAP was more cost-effective than NIV (99.5% probability) because longer hospital stay in the CPAP arm was compensated for by its lower costs. Similar findings were observed in the high and low adherence subgroups.ConclusionCPAP is more cost-effective than NIV; therefore, CPAP should be the preferred treatment for patients with OHS with severe OSA.Trial registration numberNCT01405976

Author(s):  
Mª Ángeles Sanchez Quiroga ◽  
Juan Fernando Masa Jiménez ◽  
Ivan Benitez ◽  
Javier Gómez De Terreros ◽  
Jaime Corral ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 00101-2019 ◽  
Author(s):  
Hanna-Riikka Kreivi ◽  
Tuomas Itäluoma ◽  
Adel Bachour

IntroductionThe prevalence of obesity is continually increasing worldwide, which increases the incidence of obesity hypoventilation syndrome (OHS) and its consequent mortality.MethodsWe reviewed the therapy mode, comorbidity and mortality of all OHS patients treated at our hospital between 2005 and 2016. The control group consisted of randomly selected patients with obstructive sleep apnoea (OSA) treated during the same period.ResultsWe studied 206 OHS patients and 236 OSA patients. The OHS patients were older (56.3 versus 52.3 years, p<0.001) and heavier (body mass index 46.1 versus 32.2 kg·m−2, p<0.001), and the percentage of women was higher (41.2% versus 24.2%, p<0.001), respectively. The OHS patients had more hypertension (83% versus 61%, p<0.001) and diabetes (62% versus 31%, p<0.001) than the OSA patients, but no higher stroke (4% versus 8%, p=0.058) or ischaemic heart disease (14% versus 15%, p=0.437) incidence. The 5- and 10-year, unadjusted survival rates were lower among the OHS patients than among the OSA patients (83% versus 96% and 74% versus 91%, respectively; p<0.001). Differences in mortality rates were not related to age, sex or body mass index; covariates such as Charlson Comorbidity Index and ventilation therapy predicted survival. The mortality rate decreased significantly (p<0.001) both in OHS and OSA patients even after adjusting for covariates.ConclusionsThe mortality rate in OHS was significantly higher than that in OSA patients even after adjusting for covariates. Ventilation therapy by continuous positive airway pressure or noninvasive ventilation have reduced mortality significantly in all patients.


2019 ◽  
Vol 28 (151) ◽  
pp. 180097 ◽  
Author(s):  
Juan F. Masa ◽  
Jean-Louis Pépin ◽  
Jean-Christian Borel ◽  
Babak Mokhlesi ◽  
Patrick B. Murphy ◽  
...  

Obesity hypoventilation syndrome (OHS) is defined as a combination of obesity (body mass index ≥30 kg·m−2), daytime hypercapnia (arterial carbon dioxide tension ≥45 mmHg) and sleep disordered breathing, after ruling out other disorders that may cause alveolar hypoventilation. OHS prevalence has been estimated to be ∼0.4% of the adult population. OHS is typically diagnosed during an episode of acute-on-chronic hypercapnic respiratory failure or when symptoms lead to pulmonary or sleep consultation in stable conditions. The diagnosis is firmly established after arterial blood gases and a sleep study. The presence of daytime hypercapnia is explained by several co-existing mechanisms such as obesity-related changes in the respiratory system, alterations in respiratory drive and breathing abnormalities during sleep. The most frequent comorbidities are metabolic and cardiovascular, mainly heart failure, coronary disease and pulmonary hypertension. Both continuous positive airway pressure (CPAP) and noninvasive ventilation (NIV) improve clinical symptoms, quality of life, gas exchange, and sleep disordered breathing. CPAP is considered the first-line treatment modality for OHS phenotype with concomitant severe obstructive sleep apnoea, whereas NIV is preferred in the minority of OHS patients with hypoventilation during sleep with no or milder forms of obstructive sleep apnoea (approximately <30% of OHS patients). Acute-on-chronic hypercapnic respiratory failure is habitually treated with NIV. Appropriate management of comorbidities including medications and rehabilitation programmes are key issues for improving prognosis.


2014 ◽  
Vol 18 (67) ◽  
pp. 1-296 ◽  
Author(s):  
Linda Sharples ◽  
Matthew Glover ◽  
Abigail Clutterbuck-James ◽  
Maxine Bennett ◽  
Jake Jordan ◽  
...  

BackgroundObstructive sleep apnoea–hypopnoea (OSAH) causes excessive daytime sleepiness (EDS), impairs quality of life (QoL) and increases cardiovascular disease and road traffic accident risks. Continuous positive airway pressure (CPAP) treatment is clinically effective but undermined by intolerance, and its cost-effectiveness is borderline in milder cases. Mandibular advancement devices (MADs) are another option, but evidence is lacking regarding their clinical effectiveness and cost-effectiveness in milder disease.Objectives(1) Conduct a randomised controlled trial (RCT) examining the clinical effectiveness and cost-effectiveness of MADs against no treatment in mild to moderate OSAH. (2) Update systematic reviews and an existing health economic decision model with data from the Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea–hypopnoea (TOMADO) and newly published results to better inform long-term clinical effectiveness and cost-effectiveness of MADs and CPAP in mild to moderate OSAH.TOMADOA crossover RCT comparing clinical effectiveness and cost-effectiveness of three MADs: self-moulded [SleepPro 1™ (SP1); Meditas Ltd, Winchester, UK]; semibespoke [SleepPro 2™ (SP2); Meditas Ltd, Winchester, UK]; and fully bespoke [bespoke MAD (bMAD); NHS Oral-Maxillofacial Laboratory, Addenbrooke’s Hospital, Cambridge, UK] against no treatment, in 90 adults with mild to moderate OSAH. All devices improved primary outcome [apnoea–hypopnoea index (AHI)] compared with no treatment: relative risk 0.74 [95% confidence interval (CI) 0.62 to 0.89] for SP1; relative risk 0.67 (95% CI 0.59 to 0.76) for SP2; and relative risk 0.64 (95% CI 0.55 to 0.76) for bMAD (p < 0.001). Differences between MADs were not significant. Sleepiness [as measured by the Epworth Sleepiness Scale (ESS)] was scored 1.51 [95% CI 0.73 to 2.29 (SP1)] to 2.37 [95% CI 1.53 to 3.22 (bMAD)] lower than no treatment (p < 0.001), with SP2 and bMAD significantly better than SP1. All MADs improved disease-specific QoL. Compliance was lower for SP1, which was unpopular at trial exit. At 4 weeks, all devices were cost-effective at £20,000/quality-adjusted life-year (QALY), with SP2 the best value below £39,800/QALY.Meta-analysisA MEDLINE, EMBASE and Science Citation Index search updating two existing systematic reviews (one from November 2006 and the other from June 2008) to August 2013 identified 77 RCTs in adult OSAH patients comparing MAD with conservative management (CM), MADs with CPAP or CPAP with CM. MADs and CPAP significantly improved AHI [MAD −9.3/hour (p < 0.001); CPAP −25.4/hour (p < 0.001)]. Effect difference between CPAP and MADs was 7.0/hour (p < 0.001), favouring CPAP. No trials compared CPAP with MADs in mild OSAH. MAD and CPAP reduced the ESS score similarly [MAD 1.6 (p < 0.001); CPAP 1.6 (p < 0.001)].Long-term cost-effectivenessAn existing model assessed lifetime cost–utility of MAD and CPAP in mild to moderate OSAH, using the revised meta-analysis to update input values. The TOMADO provided utility estimates, mapping ESS score to European Quality of Life-5 Dimensions three-level version for device cost–utility. Using SP2 as the standard device, MADs produced higher mean costs and mean QALYs than CM [incremental cost-effectiveness ratio (ICER) £6687/QALY]. From a willingness to pay (WTP) of £15,367/QALY, CPAP is cost-effective, although the likelihood of MADs (p = 0.48) and CPAP (p = 0.49) being cost-effective is very similar. Both were better than CM, but there was much uncertainty in the choice between CPAP and MAD (at a WTP £20,000/QALY, the probability of being the most cost-effective was 47% for MAD and 52% for CPAP). When SP2 lifespan increased to 18 months, the ICER for CPAP compared with MAD became £44,066. The ICER for SP1 compared with CM was £1552, and for bMAD compared with CM the ICER was £13,836. The ICER for CPAP compared with SP1 was £89,182, but CPAP produced lower mean costs and higher mean QALYs than bMAD. Differential compliance rates for CPAP reduces cost-effectiveness so MADs become less costly and more clinically effective with CPAP compliance 90% of SP2.ConclusionsMandibular advancement devices are clinically effective and cost-effective in mild to moderate OSAH. A semi-bespoke MAD is the appropriate first choice in most patients in the short term. Future work should explore whether or not adjustable MADs give additional clinical and cost benefits. Further data on longer-term cardiovascular risk and its risk factors would reduce uncertainty in the health economic model and improve precision of effectiveness estimates.Trial registrationThis trial is registered as ISRCTN02309506.FundingThis project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full inHealth Technology Assessment; Vol. 18, No. 67. See the NIHR Journals Library website for further project information.


Sign in / Sign up

Export Citation Format

Share Document