scholarly journals Effect of electric heating and ice added to the bowl on mainstream waterpipe semivolatile furan and other toxicant yields

2019 ◽  
Vol 29 (Suppl 2) ◽  
pp. s110-s116 ◽  
Author(s):  
Marielle C Brinkman ◽  
Andreas A Teferra ◽  
Noura O Kassem ◽  
Nada OF Kassem

ObjectivesWe examined mainstream total particulate matter, nicotine, cotinine, menthol, pyrene, carbon monoxide (CO) and semivolatile furan yields from a commercial waterpipe with two methods for heating the tobacco, quick-light charcoal (charcoal) and electric head (electric) and two water bowl preparations: with (ice) and without ice (water).MethodsEmissions from a single brand of popular waterpipe tobacco (10 g) were generated using machine smoking according to a two-stage puffing regimen developed from human puffing topography. Tobacco and charcoal consumption were calculated for each machine smoking session as mass lost, expressed as a fraction of presmoking mass.ResultsThe heating method had the greatest effect on toxicant yields. Electric heating resulted in increases in the fraction of tobacco consumed (2.4 times more, p<0.0001), mainstream nicotine (1.4 times higher, p=0.002) and semivolatile furan yields (1.4 times higher, p<0.03), and a decrease in mainstream CO and pyrene yields (8.2 and 2.1 times lower, respectively, p<0.001) as compared with charcoal. Adding ice to the bowl resulted in higher furan yields for electric heating. Menthol yields were not different across the four conditions and averaged 0.16±0.03 mg/session. 2-Furaldehyde and 5-(hydroxymethyl)−2-furaldehyde yields were up to 230 and 3900 times higher, respectively, than those reported for cigarettes.ConclusionWaterpipe components used to heat the tobacco and water bowl preparation can significantly affect mainstream toxicant yields. Mainstream waterpipe tobacco smoke is a significant source of inhalation exposure to semivolatile furans with human carcinogenic and mutagenic potential. These data highlight the need for acute and chronic inhalation toxicity data for semivolatile furans and provide support for the establishment of limits governing sugar additives in waterpipe tobacco and educational campaigns linking waterpipe tobacco smoking behaviours with their associated harm.

2018 ◽  
Vol 28 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Mohammed Jawad ◽  
Thomas Eissenberg ◽  
Rola Salman ◽  
Eric Soule ◽  
Karem H Alzoubi ◽  
...  

BackgroundStudies that assess waterpipe tobacco smoking behaviour and toxicant exposure generally use controlled laboratory environments with small samples that may not fully capture real-world variability in human behaviour and waterpipe products. This study aimed to conduct real-time sampling of waterpipe tobacco use in natural environments using an in situ device.MethodsWe used the REALTIME sampling instrument: a validated, portable, self-powered device designed to sample automatically a fixed percentage of the aerosol flowing through the waterpipe mouthpiece during every puff. We recruited participants at café and home settings in Jordan and measured puffing behaviour in addition to inhalation exposure of total particulate matter (TPM), carbon monoxide (CO), nicotine, polycyclic aromatic hydrocarbons and volatile aldehydes. We correlated total inhaled volume with five selected toxicants and calculated the regression line of this relationship.ResultsAveraged across 79 singleton sessions (52% male, mean age 27.0, 95% home sessions), sessions lasted 46.9 min and participants drew 290 puffs and inhaled 214 L per session. Mean quantities of inhaled toxicants per session were 1910 mg TPM, 259 mg CO, 5.0 mg nicotine, 117 ng benzo[a]pyrene and 198 ng formaldehyde. We found positive correlations between total inhaled volume and TPM (r=0.472; p<0.001), CO (r=0.751; p<0.001), nicotine (r=0.301, p=0.035) and formaldehyde (r=0.526; p<0.001), but a non-significant correlation for benzo[a]pyrene (r=0.289; p=0.056).ConclusionsIn the natural environment, waterpipe tobacco users inhale large quantities of toxicants that induce tobacco-related disease, including cancer. Toxicant content per waterpipe session is at least equal, but for many toxicants several magnitudes of order higher, than that of a cigarette. Health warnings based on early controlled laboratory studies were well founded; if anything our findings suggest a greater exposure risk.


2018 ◽  
Vol 4 (2) ◽  
pp. 214-219
Author(s):  
Dan Wilson ◽  
Sanjeeva J. Wijeyesakere ◽  
Amanda K. Parks ◽  
Tyler R. Auernhammer ◽  
Shannon Krieger ◽  
...  

2001 ◽  
Vol 20 (2_suppl) ◽  
pp. 1-11

Arnica Montana Extract is an extract of dried flowerheads of the plant, Arnica montana. Arnica Montana is a generic term used to describe a plant material derived from the dried flowers, roots, or rhizomes of A. montana. Common names for A. montana include leopard's bane, mountain tobacco, mountain snuff, and wolf's bane. Two techniques for preparing Arnica Montana Extract are hydroalcoholic maceration and gentle disintegration in soybean oil. Propylene glycol and butylene glycol extractions were also reported. The composition of these extracts can include fatty acids, especially palmitic, linoleic, myristic, and linolenic acids, essential oil, triterpenic alcohols, sesquiterpene lactones, sugars, phytosterols, phenol acids, tannins, choline, inulin, phulin, arnicin, flavonoids, carotenoids, coumarins, and heavy metals. The components present in these extracts are dependent on where the plant is grown. Arnica Montana Extract was reported to be used in almost 100 cosmetic formulations across a wide range of product types, whereas Arnica Montana was reported only once. Extractions of Arnica Montana were tested and found not toxic in acute toxicity tests in rabbits, mice, and rats; they were not irritating, sensitizing, or phototoxic to mouse or guinea pig skin; and they did not produce significant ocular irritation. In an Ames test, an extract of A. montana was mutagenic, possibly related to the flavenoid content of the extract. No carcinogenicity or reproductive/developmental toxicity data were available. Clinical tests of extractions failed to elicit irritation or sensitization, yet Arnica dermatitis, a delayed type IV allergy, is reported in individuals who handle arnica flowers and may be caused by sesquiterpene lactones found in the flowers. Ingestion of A. montana–containing products has induced severe gastroenteritis, nervousness, accelerated heart rate, muscular weakness, and death. Absent any basis for concluding that data on one member of a botanical ingredient group can be extrapolated to another in the group, or to the same ingredient extracted differently, these data were not considered sufficient to assess the safety of these ingredients. Additional data needs include current concentration of use data; function in cosmetics; ultraviolet (UV) absorption data—if absorption occurs in the UVA or UVB range, photosensitization data are needed; gross pathology and histopathology in skin and other major organ systems associated with repeated dermal exposures; dermal reproductive/developmental toxicity data; inhalation toxicity data, especially addressing the concentration, amount delivered, and particle size; and genotoxicity testing in a mammalian system; if positive, a 2-year dermal carcinogenicity assay performed using National Toxicology Program (NTP) methods is needed. Until these data are available, it is concluded that the available data are insufficient to support the safety of these ingredients in cosmetic formulations.


2019 ◽  
Vol 8 (4) ◽  
pp. 580-586 ◽  
Author(s):  
Young-Sub Lee ◽  
Jae-Hyuck Sung ◽  
Kyung-Seuk Song ◽  
Jin-Kwon Kim ◽  
Byung-Sun Choi ◽  
...  

In this study, we aimed to provide the recommended occupational exposure limits (OELs) for MWCNTs and graphene nanomaterials based on data from a subchronic inhalation toxicity study using a lung dosimetry model.


2018 ◽  
Vol 247 ◽  
pp. 00039
Author(s):  
Joanna Rakowska ◽  
Karolina Kuskowska ◽  
Wioletta Rogula-Kozłowska

The paper presents the results of research into the concentration of respirable and total particulate matter (PM) in a work environment of firefighters. Measurements were carried out from September 2017 to October 2017 during official capacity of firefighters, i.e. during firefighting, liquidation of other local hazards. The PM concentration was examined by the gravimetric method. For this purpose, two GilAir 3 aspirators and glass fibre filters were used. During the whole duty, the samplers were placed in the pockets of the uniform, while the measuring heads were harnessed to the collar of the uniform. The deposited mass of PM in the different regions of the respiratory tract was calculated using the Eulerian Multiple Path Particle Dosimetry model. Especially high PM concentrations were noted during firefighting, The PM deposits in the head, the trachea and bronchiolar and pulmonary alveolar regions were different depending on the action the firemen had to deal with.


2009 ◽  
Vol 28 (2_suppl) ◽  
pp. 141S-161S ◽  
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Curtis D. Klaassen ◽  
James G. Marks ◽  
...  

Aminomethyl propanol and aminomethyl propanediol are substituted aliphatic alcohols that function as pH adjusters in cosmetic products at concentrations less than 10%; additionally, aminomethyl propanediol is a fragrance. Extensive oral toxicity data are reviewed, with fewer inhalation toxicity data. Dermal toxicity data are presented that demonstrate, for example, that a mascara with 1.92% aminomethyl propanediol does not cause dermal irritation or allergic contact sensitization, suggesting that the maximum reported use concentration of 2% in mascara would be safe. Although these ingredients are primary amines that are not substrates for N-nitrosation, they may contain secondary amines as impurities in finished products that may undergo N-nitrosation. These ingredients should not be included in cosmetic formulations containing N-nitrosating agents. The Cosmetic Ingredient Review Expert Panel concludes that aminomethyl propanol and aminomethyl propanediol are safe as cosmetic ingredients in the practices of use and concentrations as described in this safety assessment.


Sign in / Sign up

Export Citation Format

Share Document