scholarly journals Shear stress and flow-mediated dilation in the normoxic and hypoxic human

2019 ◽  
Vol 44 (8) ◽  
pp. 902-902
Author(s):  
Joshua C. Tremblay

The endothelium is a single cell layer that plays a critical role in determining the health and function of blood vessels. Endothelial function is shaped by shear stress, the frictional force exerted by the speed of blood flow, and the thickness (viscosity) of the blood. Exposure to shear stress that reverses direction back-and-forth impairs endothelial function in young men. Whether women are equally susceptible to this perturbation and the isolated impact of a low level of shear stress with and without reversal of shear had not been investigated. Hypoxia, the low levels of oxygen that are experienced at high altitude, has been shown to influence flow reversal and impair endothelial function. However, no previous study had accounted for the changes in blood thickness, and hence shear stress that occur at high altitude. This may be especially important in the context of excessive erythrocytosis, a high-altitude disease characterized by exceptionally thick blood and increased cardiovascular risk. This thesis examined (i) whether there are sex differences in the impact of exposure to low and reversing shear stress on endothelial function; (ii) whether isolated low shear stress impairs endothelial function; (iii) the impact of reversing shear stress on endothelial function in short-term exposure to low levels of oxygen and after trekking to 5050 m in the Himalayas; and (iv) the role of high levels of blood viscosity on endothelial function in high-altitude natives in Cerro de Pasco, Peru (4330 m), with excessive erythrocytosis. We identified that (i) premenopausal women have some protection against reductions in endothelial function after being exposed to reversing shear stress; (ii) isolated low shear stress impaired endothelial function; (iii) short-term exposure to low levels of oxygen and sustained high-altitude exposure reduced endothelial function, while superimposing reversing shear stress had no effect; and (iv) high levels of hemoglobin and blood viscosity contributed to lower endothelial function in Andean high-altitude natives with excessive erythrocytosis. Altogether, this dissertation advances our understanding of how the components of shear stress (the pattern, magnitude, and blood viscosity) impact endothelial function in humans under normoxic (normal levels of oxygen) and hypoxic (low levels of oxygen, such as high-altitude) conditions.

2018 ◽  
Vol 315 (6) ◽  
pp. H1532-H1543 ◽  
Author(s):  
Joshua C. Tremblay ◽  
Ryan L. Hoiland ◽  
Howard H. Carter ◽  
Connor A. Howe ◽  
Mike Stembridge ◽  
...  

The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent


2020 ◽  
Vol 76 (1) ◽  
pp. 147-157
Author(s):  
Linlin Zhu ◽  
Feng Wang ◽  
Hongfeng Yang ◽  
Junjie Zhang ◽  
Shaoliang Chen

2021 ◽  
Vol 22 (24) ◽  
pp. 13300
Author(s):  
Fabio Bertani ◽  
Dalila Di Francesco ◽  
Maria Dolores Corrado ◽  
Maria Talmon ◽  
Luigia Grazia Fresu ◽  
...  

Cardiovascular diseases (CVDs), mainly ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and major contributors to disability worldwide. Despite their heterogeneity, almost all CVDs share a common feature: the endothelial dysfunction. This is defined as a loss of functionality in terms of anti-inflammatory, anti-thrombotic and vasodilatory abilities of endothelial cells (ECs). Endothelial function is greatly ensured by the mechanotransduction of shear forces, namely, endothelial wall shear stress (WSS). Low WSS is associated with endothelial dysfunction, representing the primary cause of atherosclerotic plaque formation and an important factor in plaque progression and remodeling. In this work, the role of factors released by ECs subjected to different magnitudes of shear stress driving the functionality of downstream endothelium has been evaluated. By means of a microfluidic system, HUVEC monolayers have been subjected to shear stress and the conditioned media collected to be used for the subsequent static culture. The results demonstrate that conditioned media retrieved from low shear stress experimental conditions (LSS-CM) induce the downregulation of endothelial nitric oxide synthase (eNOS) expression while upregulating peripheral blood mononuclear cell (PBMC) adhesion by means of higher levels of adhesion molecules such as E-selectin and ICAM-1. Moreover, LSS-CM demonstrated a significant angiogenic ability comparable to the inflammatory control media (TNFα-CM); thus, it is likely related to tissue suffering. We can therefore suggest that ECs stimulated at low shear stress (LSS) magnitudes are possibly involved in the paracrine induction of peripheral endothelial dysfunction, opening interesting insights into the pathogenetic mechanisms of coronary microvascular dysfunction.


2021 ◽  
Vol 545 ◽  
pp. 20-26
Author(s):  
AFang Li ◽  
LiLan Tan ◽  
ShuLei Zhang ◽  
Jun Tao ◽  
Zuo Wang ◽  
...  

Author(s):  
Alina G. van der Giessen ◽  
Jolanda J. Wentzel ◽  
Frans N. van de Vosse ◽  
Antonius F. van der Steen ◽  
Pim J. de Feyter ◽  
...  

It is generally accepted that early atherosclerosis develops in low shear-stress (SS) regions such as the outer wall of arterial bifurcations and the inner bend of curved vessels (1). However, in clinical practice, it is common to observe atherosclerotic plaques at the flow-divider, or carina, of coronary bifurcations (2). Plaques at the carina are more frequently found in symptomatic patients, and may represent a more advanced stage of atherosclerosis. The carina is located in a region which is exposed to high SS. We hypothesize that if plaques are located in atheroprotective high SS regions, they have grown circumferentially from the atherogenic low SS regions.


2008 ◽  
Vol 32 (3) ◽  
pp. S18-S19
Author(s):  
Dang Heng Wei ◽  
Gui Xue Wang ◽  
Yi Ping Xia ◽  
Jian Jun Lei ◽  
Lu Shang Liu ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120586 ◽  
Author(s):  
Wei-dong Qin ◽  
Shao-hua Mi ◽  
Chen Li ◽  
Gui-xia Wang ◽  
Jian-ning Zhang ◽  
...  

2008 ◽  
Vol 144 (2) ◽  
pp. 409-410
Author(s):  
Lisa R.P. Spiguel ◽  
Amito Chandiwal ◽  
Ralph R. Weichselbaum ◽  
Christopher L. Skelly

Sign in / Sign up

Export Citation Format

Share Document