Combining transcranial direct current stimulation with aerobic exercise to optimize cortical priming in stroke

Author(s):  
Anjali Sivaramakrishnan ◽  
Sangeetha Madhavan

Aerobic exercise (AE) and transcranial direct current stimulation (tDCS) are priming techniques that have been studied for their potential neuromodulatory effects on corticomotor excitability (CME), however the synergistic effects of AE and tDCS are not explored in stroke. Here we investigated the synergistic effects of AE and tDCS on CME, intracortical and transcallosal inhibition, and motor control for the lower limb in stroke. 26 stroke survivors participated in three sessions - tDCS, AE and AE + tDCS. AE included moderate intensity exercise and tDCS included 1 mA of anodal tDCS to the lower limb motor cortex with or without AE. Outcomes included measures of CME, short interval intracortical inhibition (SICI), ipsilateral silent period (iSP) (an index of transcallosal inhibition) for the tibialis anterior and ankle reaction time. Ipsilesional CME significantly decreased for AE compared to AE + tDCS and tDCS. No differences were noted in SICI, iSP measures or reaction time between all three sessions. Our findings suggest that a combination of exercise and tDCS, and tDCS demonstrate greater excitability of the ipsilesional hemisphere compared to exercise only, however these effects were specific to the descending corticomotor pathways. No additive priming effects of exercise and tDCS over tDCS was observed. Novelty: • An exercise and tDCS paradigm upregulated the descending motor pathways from the ipsilesional lower limb M1 compared to exercise. • Exercise or tDCS administered alone or in combination did not affect intracortical or transcallosal inhibition or reaction time.

2021 ◽  
pp. 154596832110193
Author(s):  
Núbia Ribeiro Conceição ◽  
Lilian Teresa Bucken Gobbi ◽  
Priscila Nóbrega-Sousa ◽  
Diego Orcioli-Silva ◽  
Victor Spiandor Beretta ◽  
...  

Background Since people with Parkinson disease (PD) rely on limited prefrontal executive resources for the control of gait, interventions targeting the prefrontal cortex (PFC) may help in managing PD-related gait impairments. Transcranial direct current stimulation (tDCS) can be used to modulate PFC excitability and improve prefrontal cognitive functions and gait. Objective We investigated the effects of adding anodal tDCS applied over the PFC to a session of aerobic exercise on gait, cognition, and PFC activity while walking in people with PD. Methods A total of 20 people with PD participated in this randomized, double-blinded, sham-controlled crossover study. Participants attended two 30-minute sessions of aerobic exercise (cycling at moderate intensity) combined with different tDCS conditions (active- or sham-tDCS), 1 week apart. The order of sessions was counterbalanced across the sample. Anodal tDCS (2 mA for 20 minutes [active-tDCS] or 10 s [sham-tDCS]) targeted the PFC in the most affected hemisphere. Spatiotemporal gait parameters, cognitive functions, and PFC activity while walking were assessed before and immediately after each session. Results Compared with the pre-assessment, participants decreased step time variability (effect size: −0.4), shortened simple and choice reaction times (effect sizes: −0.73 and −0.57, respectively), and increased PFC activity in the stimulated hemisphere while walking (effect size: 0.54) only after aerobic exercise + active-tDCS. Conclusion The addition of anodal tDCS over the PFC to a session of aerobic exercise led to immediate positive effects on gait variability, processing speed, and executive control of walking in people with PD.


2019 ◽  
Vol 12 (4) ◽  
pp. 1086-1088 ◽  
Author(s):  
Ashlee M. Hendy ◽  
Helen Macpherson ◽  
Nathan D. Nuzum ◽  
Paul A. Della Gatta ◽  
Sarah E. Alexander ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 310
Author(s):  
Samuel Gowan ◽  
Brenton Hordacre

Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.


2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Radhika Patel ◽  
Sangeetha Madhavan

Transcranial direct current stimulation (tDCS) has been widely explored as a neuromodulatory adjunct to modulate corticomotor excitability and improve motor behavior. However, issues with the effectiveness of tDCS have led to the exploration of empirical and experimental alternate electrode placements to enhance neuromodulatory effects. Here, we conducted a preliminary study to compare a novel electrode montage (which involved placing 13 cm2 electrodes anterior and posterior to the target location) to the traditionally used electrode montage (13 cm2 stimulating electrode over the target area and the 35 cm2 reference electrode over the contralateral orbit). We examined the effects of tDCS of the lower limb motor area (M1) by measuring the corticomotor excitability (CME) of the tibialis anterior muscle using transcranial magnetic stimulation in twenty healthy participants. We examined behavioral effects using a skilled motor control task performed with the ankle. We did not find one electrode montage to be superior to the other for changes in the CME or motor control. When the group was dichotomized into responders and non-responders (based on upregulation in CME), we found that the responders showed significant upregulation from baseline after tDCS for both montages. However, only the responders in the traditional montage group showed significant changes in motor control after tDCS. These results do not support the superiority of the new anterior–posterior montage over the traditional montage. Further work with a larger cohort and multiple cumulative sessions may be necessary to confirm our results.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 191
Author(s):  
Solange Zilli Lo Presti Heinz ◽  
Katia De Angelis ◽  
Glauber Heinz ◽  
Ariane Viana ◽  
Fernanda Marciano Consolim-Colombo ◽  
...  

Background: Individuals after a stroke have an imbalance in the autonomic nervous system, which increases the risk of death or recurrent episodes of stroke. Transcranial Direct Current Stimulation (tDCS) combined with aerobic exercise has shown an effect on the modulation of this system. Objective: The Heart Rate Variability (HRV) and the distance traveled on the exercise bike will be assessed to verify the additional impact of tDCS combined with aerobic exercise on individuals with chronic stroke sequelae. Methods: The 34 adult individuals with diagnoses of chronic stroke will be randomized into two aerobic exercise intervention groups: G1 (with active tDCS) and G2 (with sham tDCS), three times a week, for 12 weeks. Procedures: tDCS will be implemented during the aerobic exercise with the anodal electrode positioned over the lateral dorsal prefrontal left cortex, and the cathodal electrode over the contralateral supraorbital region, with 2mA, for 20 minutes. Assessments will be carried out pre, immediately after the intervention, and on the 12th, 24th, 36th interventions, and 30 days later. The HRV data that are pulse interval (PI), square root of the mean of the squares of the differences between adjacent normal RR intervals (rMSSD), absolute high frequency (HF), absolute low frequency (LF), high and low frequency ratio (LF / HF) will be collected using a cardio frequency meter. The analysis of the distance traveled on the exercise bike before and after interventions will be analyzed in meters. Discussion: The autonomic control via brain networks after a stroke can be altered and can promote an increase in sympathetic tone, and a higher risk of sudden death or relapse of stroke.  It is crucial to demonstrate the effectiveness of available treatments to improve the autonomic function. Trial registration: The study is registered as a BRAZILIAN CLINICAL TEST RECORD (ReBEC): U1111-1222-4588 on the 2018/10/16


Sign in / Sign up

Export Citation Format

Share Document