scholarly journals Impact of wearing a surgical and cloth mask during cycle exercise

Author(s):  
Connor Doherty ◽  
Leah Mann ◽  
Sarah Anne Angus ◽  
Jason Chan ◽  
Yannick Molgat-Seon ◽  
...  

We sought to determine the impact of wearing cloth or surgical masks on the cardiopulmonary responses to moderate-intensity exercise. Twelve subjects (n=5 females) completed three, 8-min cycling trials while breathing through a: non-rebreathing valve (laboratory control), cloth, or surgical mask. Heart rate (HR), oxyhemoglobin saturation (SpO2), breathing frequency (Fb), mouth pressure, partial pressure of end-tidal carbon dioxide (PetCO2) and oxygen (PetO2), dyspnea, were measured throughout exercise. A subset of n=6 subjects completed an additional exercise bout without a mask (ecological control). There were no differences in Fb, HR or SpO2 across conditions (all p>0.05). Compared to the laboratory control (0.9±0.7cmH2O[mean±SD]), mouth pressure swings were greater with the surgical mask (4.7±0.9; p<0.0001), but similar with the cloth mask (3.6±4.8cmH2O; p=0.66). Wearing a cloth mask decreased PetO2 (-3.5±3.7mmHg) and increased PetCO2 (+2.0±1.3mmHg) relative to the ecological control (both p<0.05). There were no differences in end-tidal gases between mask conditions and laboratory control (both p>0.05). Dyspnea was similar between the control conditions and the surgical mask (p>0.05) but was greater with the cloth mask compared to laboratory (+0.9±1.2) and ecological (+1.5±1.3) control conditions (both p<0.05). Wearing a mask during short-term moderate-intensity exercise may increase dyspnea but has minimal impact on the cardiopulmonary response. Novelty bullets: • Wearing surgical or cloth masks during exercise has no impact on breathing frequency, tidal volume, oxygenation, heart rate • However, there are some changes in inspired and expired gas fractions that are physiologically irrelevant. • In young healthy individuals, wearing surgical or cloth masks during submaximal exercise has few physiological consequences.

Author(s):  
Douglas Lopes Almeida ◽  
Gabriel Sergio Fabricio ◽  
Laize Peron Tófolo ◽  
Tatiane Aparecida Ribeiro ◽  
Camila Cristina Ianoni Matiusso ◽  
...  

Abstract Exercise counteracts obesity effects, but information on how early-life obesity may affect long-term adaptation to exercise is lacking. This study investigates the impact of early-life postnatal overfeeding (PO) on animals’ adaptation to exercise. Only male Wistar rats were used. On postnatal day (PN) 30, rats from control (NL-9 pups) or PO (SL-3 pups) litters were separated into four groups: NL-sedentary (NL-Se), NL-exercised (NL-Ex), SL-sedentary (SL-Se), and SL-exercised (SL-Ex). Exercised groups performed moderate-intensity exercise, running on a treadmill, from PN30 to PN90. Further experiments were carried out between PN90 and PN92. PO promoted obesity in SL versus NL rats (P < 0.05). Exercise reduced body weight (P < 0.001), body fat (P < 0.01), and improved glucose homeostasis in SL-Ex versus SL-Se. SL-Ex presented lower VO2max (P < 0.01) and higher post-exercise LDH (P < 0.05) compared to NL-Ex rats. Although moderate exercise counteracted obesity in SL rats, early-life overnutrition restricts fitness gains in adulthood, indicating that early obesity may impair animals’ adaptation to exercise.


2000 ◽  
Vol 88 (5) ◽  
pp. 1650-1658 ◽  
Author(s):  
B. D. Johnson ◽  
K. C. Beck ◽  
D. N. Proctor ◽  
J. Miller ◽  
N. M. Dietz ◽  
...  

An open-circuit (OpCirc) acetylene uptake cardiac output (Q˙t) method was modified for use during exercise. Two computational techniques were used. OpCirc1 was based on the integrated uptake vs. end-tidal change in acetylene, and OpCirc2 was based on an iterative finite difference modeling method. Six subjects [28–44 yr, peak oxygen consumption (V˙o 2) = 120% predicted] performed cycle ergometry exercise to compareQ˙t using OpCirc and direct Fick methods. An incremental protocol was repeated twice, separated by a 10-min rest, and subsequently subjects exercised at 85–90% of their peak work rate. Coefficient of variation of the OpCirc methods and Fick were highest at rest (OpCirc1, 7%, OpCirc2, 12%, Fick, 10%) but were lower at moderate to high exercise intensities (OpCirc1, 3%, OpCirc2, 3%, Fick, 5%). OpCirc1 and OpCirc2 Q˙t correlated highly with Fick Q˙t( R 2 = 0.90 and 0.89, respectively). There were minimal differences between OpCirc1 and OpCirc2 compared with Fick up to moderate-intensity exercise (<70% peakV˙o 2); however, both techniques tended to underestimate Fick at >70% peakV˙o 2. These differences became significant for OpCirc1 only. Part of the differences between Fick and OpCirc methods at the higher exercise intensities are likely related to inhomogeneities in ventilation and perfusion matching ( R 2 = 0.36 for Fick − OpCirc1 vs. alveolar-to-arterial oxygen tension difference). In conclusion, both OpCirc methods provided reproducible, reliable measurements ofQ˙t during mild to moderate exercise. However, only OpCirc2 appeared to approximate FickQ˙t at the higher work intensities.


Author(s):  
Andrew R. JAGIM ◽  
Nicolas KOCH-GALLUP ◽  
Clayton L. CAMIC ◽  
Leah KROENING ◽  
Charles NOLTE ◽  
...  

1996 ◽  
Vol 21 (4) ◽  
pp. 285-300 ◽  
Author(s):  
Claudette M. St. Croix ◽  
David A. Cunningham ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

The purpose of this study was to measure the contribution of the peripheral chemoreceptor (pRc) to [Formula: see text] during the steady-state of moderate-intensity cycle ergometer exercise using continuous hyperoxic suppression of pRc drive, while stabilizing the drive from the central chemoreceptor by clamping end-tidal PCO2 (PETCO2) at the peak level attained during the hyperoxic period of a poikilocapnic ride. In the isocapnic protocol, the PETCO2 was maintained at a constant level by a negative feedback, open loop system. Five subjects completed four repetitions of each of the poikilocapnic and isocapnic protocols. In the poikilocapnic protocol, [Formula: see text] declined following the step into hyperoxia and then began to increase, whereas the decline in [Formula: see text] was maintained in the isocapnic protocol. However, the mean decrease in [Formula: see text] was not significantly different between the poikilocapnic (16.1 ± 5.0%) and isocapnic (14.9 ± 4.4%) protocols. These results suggest that the declining phase of [Formula: see text] is fully complete before the secondary central stimulating actions of hyperoxia on [Formula: see text] and that the pRc contributes about 15% of the drive to breathe in moderate intensity exercise. Key words: ventilatory control, carotid bodies, hyperoxia


2004 ◽  
Vol 147 (5) ◽  
pp. e8-e15 ◽  
Author(s):  
Radim Jurca ◽  
Timothy S Church ◽  
Gina M Morss ◽  
Alexander N Jordan ◽  
Conrad P Earnest

1995 ◽  
Vol 79 (4) ◽  
pp. 1112-1119 ◽  
Author(s):  
W. L. Kenney ◽  
C. W. Ho

During dynamic exercise in warm environments, requisite increases in skin and active muscle blood flows are supported by increasing cardiac output (Qc) and redistributing flow away from splanchnic and renal circulations. To examine the effect of age on these responses, six young (Y; 26 +/- 2 yr) and six older (O; 64 +/- 2 yr) men performed upright cycle exercise at 35 and 60% of peak O2 consumption (VO2peak) in 22 and 36 degrees C environments. To further isolate age, the two age groups were closely matched for VO2peak, weight, surface area, and body composition. Measurements included heart rate, Qc (CO2 rebreathing), skin blood flow (from increases in forearm blood flow (venous occlusion plethysmography), splanchnic blood flow (indocyanine green dilution), renal blood flow (p-amino-hippurate clearance), and plasma norepinephrine concentration. There were no significant age differences in Qc; however, in both environments the O group maintained Qc at a higher stroke volume and lower heart rate. At 60% VO2peak, forearm blood flow was significantly lower in the O subjects in each environment. Splanchnic blood flow fell (by 12–14% in both groups) at the lower intensity, then decreased to a greater extent at 60% VO2peak in Y than in O subjects (e.g., -45 +/- 2 vs. -33 +/- 3% for the hot environment, P < 0.01). Renal blood flow was lower at rest in the O group, remained relatively constant at 35% VO2peak, then decreased by 20–25% in both groups at 60% VO2peak. At 60% VO2peak, 27 and 37% more total blood flow was redistributed away from these two circulations in the Y than in the O group at 22 and 36 degrees, respectively. It was concluded that the greater increase in skin blood flow in Y subjects is partially supported by a greater redistribution of blood flow away from splanchnic and renal vascular beds.


2020 ◽  
Vol 6 (1) ◽  
pp. e000672 ◽  
Author(s):  
Karani Magutah ◽  
Kihumbu Thairu ◽  
Nilesh Patel

AimTo investigate effect of <10 min moderate intensity exercise on cardiovascular function and maximal oxygen consumption (V˙ O2max) among sedentary adults.MethodsWe studied 53 sedentary urbanites aged ≥50 years, randomised into: (1) male (MS) and (2) female (FS) undertaking three short-duration exercise (5–10 min) daily, and (3) male (ML) and (4) female (FL) exercising 30–60 min 3–5 days weekly. Resting systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate and V˙ O2max were measured at baseline and 8 weekly for 24 weeks.ResultsAt baseline, 50% MS, 61.5% ML, 53.8% FS and 53.8% FL had SBP ≥120 mm Hg, and 14.3% MS, 53.8% ML, 23.1% FS and 38.5% FL had DBP ≥80 mm Hg. At 24 weeks, where SBP remained ≥120 mm Hg, values decreased from 147±19.2 to 132.3±9.6 mm Hg (50% of MS), from 144±12.3 to 128±7.0 mm Hg (23.1% of ML), from 143.1±9.6 to 128.0±7.0 mm Hg (53.8% of FS) and from 152.3±23.7 to 129±3.7 mm Hg (30.8% of FL). For DBP ≥80 mm Hg, MS and FS percentages maintained, but values decreased from 101±15.6 to 84.5±0.7 mm Hg (MS) and 99.0±3.6 to 87.7±4.9 mm Hg (FS). In ML and FL, percentage with DBP ≥80 mm Hg dropped to 15.4% (86.1±6.5 to 82.5±3.5 mm Hg) and (91.4±5.3 to 83.5±0.71 mm Hg). V˙ O2max increased from 26.1±4.4 to 32.0±6.2 for MS, from 25.8±5.1 to 28.8±5.4 for ML (group differences p=0.02), from 20.2±1.8 to 22.7±2.0 for FS and from 21.2±1.9 to 24.2±2.7 for FL (groups differences p=0.38).ConclusionAccumulated moderate intensity exercise bouts of <10 min confer similar-to-better cardiovascular and V˙ O2max improvements compared with current recommendations among sedentary adults.


2011 ◽  
Vol 18 (6) ◽  
pp. 824-830 ◽  
Author(s):  
Emmanuel G Ciolac ◽  
Edimar A Bocchi ◽  
Julia MD Greve ◽  
Guilherme V Guimarães

Exercise training is an effective intervention for treating and preventing hypertension, but its effects on heart rate (HR) response to exercise and cardiorespiratory fitness (CRF) of non-hypertensive offspring of hypertensive parents (FH+) has not been studied. We compared the effects of three times per week equal-volume high-intensity aerobic interval (AIT) and continuous moderate-intensity exercise (CME) on HR response to exercise and CRF of FH+. Forty-four young FH+ women (25.0 ± 4.4 years) randomized to control (CON; n = 12), AIT (80–90% of VO2MAX; n = 16), or CME (50–60% of VO2MAX; n = 16) performed a graded exercise test (GXT) before and after 16 weeks of follow-up to evaluate HR response to exercise and several parameters of CRF. Resting, maximal, and reserve HR did not change after the follow-up in all groups. HR recovery (difference between HRMAX and HR at 1 minute of GXT recovery phase) improved only after AIT (11.8 ± 4.9 vs. 20.6 ± 5.8 bpm, p < 0.01). Both exercise programmes were effective for improving CRF parameters, but AIT was more effective than CME for improving oxygen consumption at the respiratory compensation point (VO2RCP; 22.1% vs. 8.8%, p = 0.008) and maximal effort (VO2MAX; 15.8% vs. 8.0%, p = 0.036), as well as tolerance time (TT) to reach anaerobic threshold (TTAT; 62.0 vs. 37.7, p = 0.048), TTRCP (49.3 vs. 32.9, p = 0.032), and TTMAX (38.9 vs. 29.2, p = 0.042). Exercise intensity was an important factor in improving HR recovery and CRF of FH+women. These findings may have important implications for designing exercise-training programmes for the prevention of an inherited hypertensive disorder.


2014 ◽  
Vol 39 (7) ◽  
pp. 835-841 ◽  
Author(s):  
Jonathan P. Little ◽  
Mary E. Jung ◽  
Amy E. Wright ◽  
Wendi Wright ◽  
Ralph J.F. Manders

The purpose of this study was to examine the impact of acute high-intensity interval training (HIIT) compared with continuous moderate-intensity (CMI) exercise on postprandial hyperglycemia in overweight or obese adults. Ten inactive, overweight or obese adults (41 ± 11 yrs, BMI = 36 ± 7 kg/m2) performed an acute bout of HIIT (10 × 1 min at approximately 90% peak heart rate (HRpeak) with 1-min recovery periods) or matched work CMI (30 min at approximately 65% HRpeak) in a randomized, counterbalanced fashion. Exercise was performed 2 h after breakfast, and glucose control was assessed by continuous glucose monitoring under standardized dietary conditions over 24 h. Postprandial glucose (PPG) responses to lunch, dinner, and the following day’s breakfast were analyzed and compared with a no-exercise control day. Exercise did not affect the PPG responses to lunch, but performing both HIIT and CMI in the morning significantly reduced the PPG incremental area under the curve (AUC) following dinner when compared with control (HIIT = 110 ± 35, CMI = 125 ± 34, control = 162 ± 46 mmol/L × 2 h, p < 0.05). The PPG AUC (HIIT = 125 ± 53, CMI = 186 ± 55, control = 194 ± 96 mmol/L × 2 h) and the PPG spike (HIIT = Δ2.1 ± 0.9, CMI = Δ3.0 ± 0.9, control = Δ3.0 ± 1.5 mmol/l) following breakfast on the following day were significantly lower following HIIT compared with both CMI and control (p < 0.05). Absolute AUC and absolute glucose spikes were not different between HIIT, CMI, or control for any meal (p > 0.05 for all). We conclude that a single session of HIIT has greater and more lasting effects on reducing incremental PPG when compared with CMI.


Sign in / Sign up

Export Citation Format

Share Document