Shared mycorrhizal networks of forest herbs: Does the presence of conspecific and heterospecific adult plants affect seedling growth and nutrient acquisition?

Botany ◽  
2012 ◽  
Vol 90 (10) ◽  
pp. 1048-1057 ◽  
Author(s):  
David J. Burke

Arbuscular mycorrhizal fungi can colonize the roots of a large number of plant species and individuals, simultaneously creating a network of hyphae connecting the roots of many plants. In this study, I examined the effect of the mycorrhizal network produced by conspecific and heterospecific adult plants on growth and nutrient content of seedlings of Arisaema triphyllum (L.) Schott. and Maianthemum racemosum (L.) Link ssp. racemosum. Seedlings of both plant species were planted so that they could become colonized by the mycorrhizal network or remain uncolonized, and were planted in the presence of a conspecific or heterospecific adult plant. After 2 years of growth, seedlings were harvested and biomass and nutrient content were determined. Biomass of A. triphyllum seedlings was not affected by the identity of the adult plant or colonization by mycorrhizal fungi. Biomass of M. racemosum seedlings was significantly affected by adult plant identity and mycorrhizal colonization. Maianthemum racemosum seedlings grown near a conspecific adult were significantly larger than when grown near a heterospecific adult, and mycorrhizal M. racemosum seedlings grown near a heterospecific adult had significantly less biomass than nonmycorrhizal seedlings. This suggests that the mycorrhizal network of some plants may confer positive or negative effects on mycorrhizal seedlings as compared to nonmycorrhizal seedlings.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


Author(s):  
Priyanka Kumari ◽  
R. R. Singh ◽  
Ruby Rani ◽  
Mahendra Singh ◽  
Uday Kumar

Litchi (Litchi chinensis Sonn.) originated from South China, it is sub-tropical evergreen fruit crops, especially grown on the marginal climate of tropics and subtropics. It is delicious juicy fruit of India having excellent nutritional quality, pleasant flavoured, good amount of antioxidant and vitamins C, vitamin B-complex and phytonutrients flavonoids. It has a great potential to earn foreign exchange in the national and international market through export. Arbuscular mycorrhizal (AM) infection is a common association between plant roots and microorganisms. It is responsible for increasing plant nutrient uptake and also increases in macro and micronutrients in leaf. Therefore, the present work has been analyzed macro and micro nutrients from soil and leaf, after 60, 90 and 120 days after inoculation of two bio-inoculants with phosphorus (SSP) including nine treatments with three replications. After 120 days of inoculation both the species of mycorrhizal combination with phosphorus application were very effective. Highest Copper content is (10.99 ppm), Zinc (33.17 ppm), Iron (121.47 ppm) and Manganese (15.33 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil) which is gradually increases. The soil nutrient content gradually decreased with time duration but no- significant difference was found among treatments after 120 days inoculation. After 120 days potting result was found that the Copper content is (1.70 ppm), Zinc (3.07 ppm), Iron (7.80 ppm) and Manganese (4.00 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil).this research was undertaken to find out whether Arbuscular mycorrhizal (AM) infection and phosphorus affect the micro-nutrient status of soil and leaves in nursery stage.


2001 ◽  
Vol 79 (10) ◽  
pp. 1161-1166 ◽  
Author(s):  
John N Klironomos ◽  
Miranda M Hart ◽  
Jane E Gurney ◽  
Peter Moutoglis

Arbuscular mycorrhizal fungal communities in northern temperate ecosystems must function during extremes in environmental conditions. However, it is not known if arbuscular mycorrhizal fungi that co-exist in soil communities have similar tolerances to stresses such as drought and freezing. The phenology of arbuscular mycorrhizal fungi was determined over one year in a community in southern Ontario, Canada. Five fungal species from the same community were then used to inoculate five plant species, in all possible combinations, and were subjected to either a freezing treatment or a drought treatment after which new seedlings were transplanted into the treated pots. The percent colonization of roots of each plant species was measured as the difference in mean colonization from the control. Freezing reduced percent colonization in almost every case, whereas drought resulted in both increased and decreased percent colonization. Fungal species responded differently to the treatments, and there was a pronounced plant × fungus effect. These results support the hypothesis that distinct functional groups of arbuscular mycorrhizal fungi exist, and these may determine plant community structure.Key words: arbuscular mycorrhizal fungi, freezing, drying, functional diversity.


2019 ◽  
Vol 40 ◽  
pp. 118-126
Author(s):  
Clémentine Lepinay ◽  
Tomáš Dostálek ◽  
Hana Pánková ◽  
Martina Svobodová ◽  
Jana Rydlová ◽  
...  

Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 277-285 ◽  
Author(s):  
Ülle Saks ◽  
John Davison ◽  
Maarja Öpik ◽  
Martti Vasar ◽  
Mari Moora ◽  
...  

We analyzed arbuscular mycorrhizal fungal (AMF) communities in plant root samples from a natural forest ecosystem — a primeval forest in Järvselja, Estonia. AMF small-subunit (SSU) ribosomal RNA genes were subjected to 454-pyrosequencing and BLAST-based taxonomic identification. Seventy-six AMF sequence groups (virtual taxa, VT) were identified from plant roots. Taken together with seven additional VT recorded in an earlier investigation of soil AMF communities at the site, this represents the highest number of AMF reported from a single ecosystem to date. The six study plant species hosted similar AMF communities. However, AMF community composition in plant roots was significantly different from that in soil and considerably more VT were retrieved from roots than from soil. AMF VT identified from plant roots as a whole and from individual plant species were frequently phylogenetically clustered compared with local and global taxon pools, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped fungal assemblages. In contrast, the phylogenetic dispersion of AMF communities in soil did not differ from random subsets of the local or global taxon pools.


Sign in / Sign up

Export Citation Format

Share Document