CELL SIZE AND SURVIVAL IN CONIFER CAMBIUM

1956 ◽  
Vol 34 (5) ◽  
pp. 769-776 ◽  
Author(s):  
M. W. Bannan ◽  
Isabel L. Bayly

The pseudotransverse divisions of fusiform initials by which the cambium of conifers is accommodated to increasing girth tend to occur at relatively high rates of frequency. The overproduction of new initials is accompanied by extensive cell loss. The continuation or reduction of fusiform initials after origin in anticlinal division is evidently related to cell length and extent of ray contacts. The largest fusiform initials generally survive and repeat the cycle of elongation and multiplication by pseudotransverse division. The cells of intermediate length continue or fail in varying proportions, the rate of failure tending to rise with increasing frequency of anticlinal division. As a rule the initials with the largest area of ray contacts persist and those with sparse ray contacts decline. The shortest fusiform initials are usually lost, passing off into maturation or undergoing further diminution to ray initials. The continued selection of the longest of the newly formed fusiform initials, which is operative at all stages in tree growth, undoubtedly contributes to the maintenance of an efficient cell length in the secondary vascular tissues.


1970 ◽  
Vol 48 (9) ◽  
pp. 1585-1589 ◽  
Author(s):  
M. W. Bannan

Study of many species of conifers has revealed certain trends with respect to cell length and rate of anticlinal division in the multiplication of fusiform initials in the cambium. In the stem, rate of anticlinal division tends to be high when annual rings are narrow, and to stabilize at a relatively low level when rings exceed 2 mm in width. Cell length at division is usually greatest when rings are about 1 mm wide, and decreases with both widening and narrowing of the rings from the optimal width. Significant differences occur between species in both rate of anticlinal division and cell length. In general, rate of anticlinal division and cell length are inversely related, but in some species there is wide deviation from the common trend.



1967 ◽  
Vol 45 (8) ◽  
pp. 1359-1369 ◽  
Author(s):  
M. W. Bannan

The early growth of a tree is marked by a widening of the annual increments, a deceleration in rate of multiplicative (anticlinal) division of fusiform cambial cells, and an increase in cell length. Distance outward from the pith at which maximation in cell size occurs, and subsequent trends in cell dimensions, are apparently modified by rate of growth. Continuation of a uniform ring width through the middle to late years favors comparative constancy in rate of anticlinal division and cell size during that stage of tree development. Reduction in amount of annual increment in the late growth to the width optimal for cell extension, about 1 mm, induces a delayed and probably heightened maximation in cell length. Continued lessening in radial growth to an annual accretion of 0.5 mm or less, with the onset of senility, results in acceleration in rate of multiplicative division and reduction in cell length.



1957 ◽  
Vol 35 (4) ◽  
pp. 425-434 ◽  
Author(s):  
M. W. Bannan

In coniferous stems the rate of multiplication of fusiform initials in the vascular cambium by means of pseudotransverse division often fluctuates considerably around the circumference. In fluted stems the frequency of these divisions is appreciably higher and the ratio of survival of the newly formed initials relative to the rate of production lower in the depressions than in the adjoining convex portions of the perimeter. The probability that compression is a factor tending to accelerate the frequency of anticlinal division is indicated by the decided increase in rate in areas of the stem subjected to radial pressure. Higher frequencies of pseudotransverse division are accompanied by reduction in mean cell length of the cambial cells and hence of the derived wood elements.



1966 ◽  
Vol 44 (11) ◽  
pp. 1515-1538 ◽  
Author(s):  
M. W. Bannan

In the cambium of mature trees a general conformity was found in the orientation of the partition in the pseudotransverse division of fusiform initials through out sectors of varying size. The proportion of divisions deviating from the preferred orientation varied with the tree, the locality, and the species, but was usually less than 10%. As radial accretion followed, periodic reversals occurred in the orientation of anticlinal divisions, the spacing between reversals, in terms of xylem increment, being related to the frequency of anticlinal division. The mean interval shortened as the rate of division rose according to the equation xy = k. While this overall relationship obtained, there was generally some inequality in the relative duration of leftward and rightward orientations of division. In species with grain in the outer wood slanted to the right, a rightward tilt of division persisted for longer periods than a leftward tilt. Conversely, in species with grain slanted to the left, thickness of xylem showing leftward orientation of multiplicative divisions exceeded that with rightward orientation. Changes associated with growth from sapling to adult were studied in Picea, in which genus grain is usually to the left in the inner wood and to the right in the outer wood. Here multiplicative divisions were usually inclined to the left in the growth of the first few years, whereas in the later growth orientation to the right endured for longer periods than to the left. Both orientation of pseudo-transverse division and direction of cell elongation after division seem to be under a general polar control. This apparently is an important element in the induction of spiral grain. Above-average net gain of fusiform initials in the turmoil of cell addition and loss, which accompanies circumferential expansion, may be a contributory factor. Serving to restrain the development of an excessive spirality are periodic reversals in direction of tilt in anticlinal division, and a high ratio of loss of cambial cells relative to the frequency of anticlinal division.



2021 ◽  
Vol 134 (7) ◽  
pp. jcs258594

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Asadullah and Sandeep Kumar are co-first authors on ‘Combined heterogeneity in cell size and deformability promotes cancer invasiveness’, published in JCS. Asadullah is a PhD Student in the lab of Prof. Shamik Sen at BSBE, IIT Bombay, Mumbai, India, who is interested in combining computational methods along with biophysics to study disease biology. Sandeep conducted the research described in this article while a PhD Student in Dr Shamik Sen's lab. He is now an Entrepreneur in Residence at TandemLaunch Inc., Montreal, Canada, interested in developing new computational approaches to studying development and cancer growth.



2017 ◽  
Vol 28 (11) ◽  
pp. 1519-1529 ◽  
Author(s):  
Alison K. Spencer ◽  
Andrew J. Schaumberg ◽  
Jennifer A. Zallen

Spatially organized macromolecular complexes are essential for cell and tissue function, but the mechanisms that organize micron-scale structures within cells are not well understood. Microtubule-based structures such as mitotic spindles scale with cell size, but less is known about the scaling of actin structures within cells. Actin-rich denticle precursors cover the ventral surface of the Drosophila embryo and larva and provide templates for cuticular structures involved in larval locomotion. Using quantitative imaging and statistical modeling, we demonstrate that denticle number and spacing scale with cell length over a wide range of cell sizes in embryos and larvae. Denticle number and spacing are reduced under space-limited conditions, and both features robustly scale over a 10-fold increase in cell length during larval growth. We show that the relationship between cell length and denticle spacing can be recapitulated by specific mathematical equations in embryos and larvae and that accurate denticle spacing requires an intact microtubule network and the microtubule minus end–binding protein, Patronin. These results identify a novel mechanism of micro­tubule-dependent actin scaling that maintains precise patterns of actin organization during tissue growth.



1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)



1963 ◽  
Vol 41 (8) ◽  
pp. 1187-1197 ◽  
Author(s):  
M. W. Bannan

Differences of considerable magnitude occur in the tracheid dimensions of North American species of Cupressus. In general the species in arid regions (C. arizonica, C. glabra, C. forbesii, and C. macnabiana) have smaller cells than the species in more humid localities (C. macrocarpa and C. pygmaea). Minor, in some cases questionably significant, differences in cell size are found at different sites for the same species. Noteworthy interspecific differences exist in the frequency of anticlinal (pseudotransverse) divisions involved in cambial cell multiplication. On the whole, these divisions take place at a faster rate in the species with small cells (C. arizonica, C. macnabiana) than in species with large cells (C. pygmaea). Some general relationships between rate of growth, frequency of pseudotransverse divisions, and cell length are also evident. In the stems of mature trees, maximum cell length is apparently associated with a ring width of approximately 1–1.5 mm. Reduction in ring width is accompanied by a rise in frequency of pseudotransverse division and a slight recession in cell length. Widening of the rings produces no change in the rate of anticlinal division, in relation to linear radial accretion, but cell length declines. The orientation of the partition in pseudotransverse division is usually unidirectional in neighboring cells, but reversals in tilt occur after varied intervals. Duration of the interval between reversals shows an inverse relationship with the frequency of pseudotransverse division.



1970 ◽  
Vol 48 (1) ◽  
pp. 85-90 ◽  
Author(s):  
D. J. C. Friend ◽  
Marion E. Pomeroy

In a spring variety of wheat an increase in light intensity over the range 200 to 5000 ft-c reduced the length of the lamina by reducing both the number and length of epidermal cells. The optimal temperature for cell length was 30 °C or above, but the number of cell divisions along the lamina decreased over the range 20 to 30 °C so that lamina length was greatest at 25 °C.Similar results were obtained with a winter variety of wheat chosen to avoid complications caused by possible interference between leaf and inflorescence growth. Changes in the size of the mesophyll cells were generally similar to those in the epidermis. The thicker leaves formed at high light intensities also had thicker mesophyll cells.



1970 ◽  
Vol 48 (7) ◽  
pp. 1363-1371 ◽  
Author(s):  
M. W. Bannan ◽  
M. Bindra

In the early growth of the stem, branches, and roots, the vascular elements are relatively short and the frequency of anticlinal division involved in cambial cell multiplication is high. As growth sheaths are added in the stem, length of cell increases and rate of multiplicative division declines. A similar trend occurs upward through the lower quarter to half the height of the stem. In the root system, the later growth of vertical roots is characterized by shortness of cell and high frequency of anticlinal division, and conversely, that of horizontal roots by great length of cell and low rate of anticlinal division. Although a general negative relationship exists between rate of anticlinal division and cell length throughout much of the tree, these features sometimes vary independently, and length of cell seems to be more closely related to amount of yearly radial accretion. Through the middle to late growth of the stem a negative relationship obtains between length of cell and width of annual ring, cell length maximating at a ring width of 1–2 mm. At this stage, frequency of division may fluctuate only narrowly over a considerable range of ring width. A continued decline in ring width to less than 0.5 mm, such as may occur on senescence, is accompanied by decreased cell length and accelerated anticlinal division. Length of the cell plate in anticlinal division, relative to that of the dividing cell, is greater in the early growth of the stem and branches and throughout horizontal roots than elsewhere in the tree. Most of the anticlinal divisions are pseudotransverse. The proportion of lateral divisions ranges from about 1% in the late growth of stems to 11% in horizontal roots.



Sign in / Sign up

Export Citation Format

Share Document