Histopathology of Pythium infected strawberry roots

1972 ◽  
Vol 50 (5) ◽  
pp. 1091-1096 ◽  
Author(s):  
S. Nemec

Host–parasite interactions between eight Pythium species, previously isolated from necrotic strawberry root tissue, and Fragaria × ananassa Duch. runner plant main roots were studied. When excised roots were placed in water on petri dish cultures, P. rostratum and P. hypogenum infection was limited to the root tip epidermis. Pythium irregulare, P. perniciosum, P. dissotocum, P. sylvaticum, P. ultimum, and unidentified isolate 1E penetrated the epidermis several centimeters along the zone of maturation. Penetration occurred most frequently through root hairs by hyphae; resulting infections usually stopped in the epidermis or adjacent cortex, and here hyphae formed sporangium-like structures, oogonia, and oospores. Extensive cortical infection by hyphae was primarily limited to the zone of elongation. Extent of epidermal and cortical infection in roots grown in soil with P. irregulare, P. dissotocum, and P. sylvaticum was similar to petri dish test results. Stelar infection by P. sylvaticum and P. dissotocum occurred mainly in phloem cells, but did not advance far into the region of maturation. Numerous oogonia formed in infected steles and usually in adjacent cortical cells. Infected roots ranged from a white to grey, water-soaked color. Extensively infected root tips typically were unhealthy, succulent, and thin.

1981 ◽  
Vol 59 (6) ◽  
pp. 969-973 ◽  
Author(s):  
Sunanda Rao ◽  
H. Y. Mohan Ram

Root tips (1 cm long) were excised from in vitro grown plants of Limnophila indica (L.) Druce and cultured in liquid medium with 2% sucrose. The explants floated horizontally on the surface of the medium; they became green, and their tips started to grow geotropically into the medium. Four to six shoot buds each were differentiated in 84.5% of the cultures in 4 weeks. Subsequently, shoot buds covered the surface of the bent part of the root and portions above and below it. No buds were formed at the cut end or near the growing root tip. Buds failed to differentiate in roots in which the apex was not growing. Histological studies of the roots showed that the buds originated from proliferating cortical cells, which had prominent chloroplasts and starch grains. The shoot buds grew into entire plants which flowered eventually.


2021 ◽  
Author(s):  
Iva McCarthy-Suarez

In spite of the known role of gibberellins (GAs), and of their antagonistic proteins, the DELLAs, in leaf hair production, no investigations, however, have assessed their hypothetical function in the production of root hairs. To this aim, the effects of supra-physiological levels of GAs/DELLAs on the spatial patterning of gene expression of the root hair (CPC) and root non-hair (GL2, EGL3 and WER) epidermal cell fate markers, as well as on the distribution, morphology and abundance of root hairs, were studied in root tips of 5-day-old A. thaliana seedlings. Results showed that excessive levels of GAs/DELLAs impaired the spatial patterning of gene expression of the root hair/non-hair epidermal cell fate markers, as well as the arrangement, shape and frequency of root hairs, giving rise to ectopic hairs and ectopic non-hairs, two-haired cells, two-tipped hairs, branched hairs, longer and denser hairs near the root tip under excessive DELLAs, and shorter and scarcer hairs near the root tip under excessive GAs. However, when the gai-1 (GA-insensitive-1) DELLA mutant protein was specifically over-expressed at the root epidermis, no changes in the patterning or abundance of root hairs occurred. Thus, these results suggest that, in seedlings of A. thaliana, the GAs/DELLAs might have a role in regulating the patterning, morphology and abundance of root hairs by acting from the sub-epidermal tissues of the root.


1994 ◽  
Vol 72 (7) ◽  
pp. 955-962 ◽  
Author(s):  
Jeanine Sequerra ◽  
André Capellano ◽  
Monique Faure-Raynard ◽  
André Moiroud

Penicillium nodositatum infects the roots of alder trees and induces the formation of structures called myconodules, which are similar to young actinorhizae. Root infection of Alnus incana by P. nodositatum as well as myconodule development were studied by light and electron microscopy and observations were compared with those described for the infection by Frankia spp. We have established an obvious homology between the early steps of the infection caused by both microorganisms. The presence of the fungus near the roots induces deformation of root hairs. The infection site is probably localized in a folding of a deformed hair. As soon as hyphae penetrate into the hair, they become enclosed in a polysaccharide matrix. Initially, P. nodositatum colonizes a region near the infected root hair that may correspond to a slightly developed prenodule. Then a nodular primordium is initiated at some distance from the initial contact and the new nodular cortex is invaded by the fungus. The zone of infection is limited to the cortical cells by a barrier of tannins. Myconodules remain small and unilobed and have an outer morphology similar to that of an incompatible Frankia nodule. Key words: Alnus, myconodule formation, Penicillium, root hair infection.


Author(s):  
Laura Laschke ◽  
Vadim Schütz ◽  
Oliver Schackow ◽  
Dieter Sicker ◽  
Lothar Hennig ◽  
...  

AbstractFor the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10–30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30–60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


2001 ◽  
Vol 47 (8) ◽  
pp. 741-753 ◽  
Author(s):  
T Yu ◽  
A Nassuth ◽  
R L Peterson

Phialocephala fortinii Wang & Wilcox is a member of root-inhabiting fungi known collectively as dark septate endophytes (DSE). Although very common and distributed worldwide, few studies have documented their interaction with roots on a structural basis. The objective of this study was to determine the early colonization events and formation of microsclerotia of P. fortinii in roots of Asparagus officinalis L., a species known to have DSE. A loose network of hyphae accumulated at the root surface, and coils formed around root hairs and external to epidermal cells overlying short cells of the dimorphic, suberized exodermis. Root penetration occurred via swollen, appressorium-like structures into epidermal cells where coiling of hyphae occurred along the periphery of the cells. Hyphae penetrated from the epidermis into short exodermal cells and from these into cortical cells. Hyphae colonized the cortex up to the endodermis and sometimes entered the vascular cylinder. Some root tips were colonized as well. Microsclerotia in epidermal and exodermal short cells accumulated glycogen, protein, and polyphosphate. Energy-dispersive X-ray spectroscopy on distinct bodies visible in microsclerotial hyphae revealed high levels of phosphorus.Key words: Mycelium radicis atrovirens, Phialocephala fortinii, microsclerotia, DSE.


2003 ◽  
Vol 30 (5) ◽  
pp. 483 ◽  
Author(s):  
Michelle Watt ◽  
Margaret E. McCully ◽  
John A. Kirkegaard

Results from a controlled environment system and the field showed that slow root elongation rate was associated with accumulation of Pseudomonas spp. in the rhizosphere; fast root elongation avoided accumulation. In the controlled environment system, total bacteria and bacteria belonging to the genus Pseudomonas were quantified along wheat (Triticum aestivum L. cv. Janz) seminal roots elongating at rates of 2.4 or 0.8 cm d–1 in loose and compacted field soil, respectively. Although total numbers of bacteria were similar for both rates of elongation, more Pseudomonas spp. accumulated on the slow-growing roots and their numbers were greatest 0.5–1 cm from the root tips. A reduced rate of root elongation in compacted soil accelerated the differentiation of root hairs, branch roots and adhesion of rhizosheath soil. Elongation rate and distance between the root tip and the zone of root hair development were positively correlated (r=0.9), providing a morphological indicator of root elongation rate in the field. Slow-growing roots from the field had 20 times more Pseudomonas spp. per unit root length than fast-growing field roots, while total bacteria were 8-fold higher; differences were greatest 0–1 cm from the tips. These results may explain how soil structure and Pseudomonas spp. interact in conservation farming. Rapid root elongation is identified as a desirable trait for avoiding accumulations of bacteria.


2021 ◽  
Author(s):  
Iva McCarthy-Suarez

A previous study (McCarthy-Suarez, 2021) showed that growing A. thaliana seedlings for 5 days under excessive levels of gibberellins (GAs)/DELLAs altered the arrangement, shape and frequency of root hairs in root tips. Because no changes in the distribution or number of root hairs occurred when the gai-1 (gibberellin-insensitive-1) DELLA was over-expressed at the root epidermis, it was concluded that the GAs/DELLAs might regulate the root hair patterning and abundance in A. thaliana seedlings by acting from the root sub-epidermal tissues. In the present study, microscopy analyses showed that excessive levels of GAs/DELLAs also modified the size and number of root tip cells in A. thaliana seedlings. While excessive DELLAs shortened and widened the root epidermal, cortical, endodermal and pericycle cells, excessive GAs, excepting the epidermal cells, generally narrowed them. However, no changes of root cell size occurred when gai-1 was over-expressed at the root epidermis. In addition, high levels of DELLAs often induced extra cells at the root epidermis, cortex, endodermis and pericycle, whereas high levels of GAs sometimes induced extra cells at the root cortex and pericycle. On the other hand, excessive levels of DELLAs enhanced the outgrowth of lateral roots in root tips, unlike excessive levels of GAs. Thus, the results of this study suggest that supra-physiological levels of GAs/DELLAs might modify the size/number of root tip cells by acting from the root sub-epidermal tissues. This, in turn, might impact on the patterning and abundance of root hairs and on the root architecture.


Plant Disease ◽  
2020 ◽  
Author(s):  
Jing Jin ◽  
H. David Shew

Black shank is a devastating disease of tobacco caused by Phytophthora nicotianae. Host resistance has been an integral part of black shank management, but after the loss of Php single-gene resistance following its widespread deployment in the 1990s, growers have relied on varieties with varying levels of partial resistance. Partial resistance is effective in suppressing disease, but continued exposure can result in an increase in pathogen aggressiveness that threatens durability of the resistance to P. nicotianae. Aggressiveness components in P. nicotianae were characterized following adaptation on two sources of partial resistance, Fla 301 and the Wz gene from Nicotiana rustica. An aggressive isolate of the two major races of P. nicotianae, race 0 and race 1, were adapted for either ‘one/two’ or ‘five/six’ generations on the two resistance sources, giving four sets of isolates based on race, number of generations of adaptation, and source of resistance. Across the four sets of isolates, adapted isolates infected higher proportions of root tips, produced more sporangia per infected root tip, and caused larger lesions than their respective non-adapted isolates of the same race and from the same resistance source. Adapted isolates also produced more aggressive zoospore progeny than the non-adapted isolates. Adaptation to partial resistance involves multiple aggressiveness components that results in the increased aggressiveness observed for P. nicotianae. These results improve our knowledge on the nature of P. nicotianae adaptation to partial resistance in tobacco and indicate that different resistance sources are likely to select for similar aggressiveness components in the pathogen.


2017 ◽  
Vol 10 (1) ◽  
pp. 35-45
Author(s):  
N.F. Lunkova ◽  
N.A. Burmistrova ◽  
M.S. Krasavina

Background:A growing part of the root is one of the most active sinks for sucrose coming from source leaves through the phloem. In the root, sucrose is unloaded from conducting bundles and is distributed among the surrounding cells. To be involved in the metabolism, sucrose should disintegrate into hexoses by means of degrading enzymes.Aims:The aim of this research was to explore the possibility of the involvement of one such enzymes, invertase, in phloem unloading as well as distribution of its activity in the functionally different tissues of the plant root tips.Method:To estimate the enzyme activities in root tissues, we applied two techniques: the histochemical method using nitro blue tetrazolium. The localization of phloem unloading was studied with carboxyfluorescein, a fluorescent marker for symplastic transport.Results:Invertase activity was not detected in the apical part of the meristem. It appeared only between the basal part of this zone and the beginning of the elongation zone. There is the root phloem unloading in that area. Invertase activity increased with increasing the distance from the root tip and reached the highest values in the region of cell transition to elongation and in the elongation zone. The activities of the enzyme varied in different tissues of the same zone and sometimes in the neighboring cells of the same tissue. Biochemical determination of invertase activity was made in the maize root segments coincident to the zones of meristem, cell elongation and differentiation. The results of both methods of determination of invertase activity were in agreement.Conclusion:It was concluded that phloem unloading correlated with invertase activity, possibly because of the activation of invertase by unloaded sucrose. Invertase is one of the factors involved in the processes preparing the cells for their transition to elongation because the concentration of osmotically active hexoses increases after cleavage of sucrose, that stimulates water entry into the cells, which is necessary for elongation growth.


Botany ◽  
2018 ◽  
Vol 96 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Kwang-Yeol Yang ◽  
Stephanie Doxey ◽  
Joan E. McLean ◽  
David Britt ◽  
Andre Watson ◽  
...  

Formulations that include nanoparticles of CuO and ZnO are being considered for agricultural applications as fertilizers because they act as sources of Cu or Zn. Currently, few studies of the effects of these nanoparticles (NPs) consider the three-way interactions of NPs with the plant plus its microbiome. At doses that produced root shortening by both nanoparticles (NPs), CuO NPs induced the proliferation of elongated root hairs close to the root tip, and ZnO NPs increased lateral root formation in wheat seedlings (Triticum aestivum L.). These responses occurred with roots colonized by a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6), originally isolated from roots of wheat grown under dryland farming in calcareous soils. The PcO6-induced tolerance to drought stress in wheat seedlings was not impaired by the NPs. Rather, growth of the PcO6-colonized plants with NPs resulted in systemic increases in the expression of genes associated with tolerance to water stress. Increased expression in the shoots of other genes related to metal stress was consistent with higher levels of Cu and Zn in PcO6-colonized shoots grown with the NPs. This work demonstrates that plants grown with CuO or ZnO NPs showed cross-protection from different challenges such as metal stress and drought.


Sign in / Sign up

Export Citation Format

Share Document