The effect of salinity on a marine and a freshwater Ascomycete

1974 ◽  
Vol 52 (3) ◽  
pp. 553-563 ◽  
Author(s):  
Darwin E. Davidson

Lulworthia medusa, the marine isolate, grew significantly better in seawater than in freshwater medium. The growth of Ophiobolus graminis, the freshwater isolate, was reduced by one-half when grown in seawater. The growth of both species was similar in natural and artificial seawater. Neither species grew under anaerobic conditions.Warburg reactions indicate that the respiration of the freshwater species is reduced in seawater. The percentage reduction is about equal to the reduced growth in seawater, as compared to freshwater. The respirational rates of L. medusa in sea and freshwater were similar. Yet growth in seawater was much greater than in freshwater. Consequently, it is proposed that the respiratory energy produced in a freshwater environment is utilized for cellular functions other than biomass increase. In contrast to the marine isolate, the metabolic processes of O. graminis are severely affected by seawater. Ecological implications of the findings are discussed.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Claudia Santori ◽  
Ricky-John Spencer ◽  
Michael B. Thompson ◽  
Camilla M. Whittington ◽  
Thomas H. Burd ◽  
...  

Abstract Humans are increasing the frequency of fish kills by degrading freshwater ecosystems. Simultaneously, scavengers like freshwater turtles are declining globally, including in the Australian Murray–Darling Basin. Reduced scavenging may cause water quality problems impacting both ecosystems and humans. We used field and mesocosm experiments to test whether scavenging by turtles regulates water quality during simulated fish kills. In the field, we found that turtles were important scavengers of fish carrion. In mesocosms, turtles rapidly consumed carrion, and water quality in mesocosms with turtles returned to pre-fish kill levels faster than in turtle-free controls. Our experiments have important ecological implications, as they suggest that turtles are critical scavengers that regulate water quality in freshwater ecosystems. Recovery of turtle populations may be necessary to avoid the worsening of ecosystem health, particularly after fish kills, which would have devastating consequences for many freshwater species.


2016 ◽  
Vol 5 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Krzysztof Roman Brom ◽  
Krzysztof Szopa

Abstract Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton – shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species – duck mussel (Anodonta anatina Linnaeus, 1758) and marine species – common cockle (Cerastoderma edule Linnaeus, 1758), lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851) and blue mussel (Mytilus edulis Linnaeus, 1758)) from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Author(s):  
D. L. Taylor

Cells function through the complex temporal and spatial interplay of ions, metabolites, macromolecules and macromolecular assemblies. Biochemical approaches allow the investigator to define the components and the solution chemical reactions that might be involved in cellular functions. Static structural methods can yield information concerning the 2- and 3-D organization of known and unknown cellular constituents. Genetic and molecular techniques are powerful approaches that can alter specific functions through the manipulation of gene products and thus identify necessary components and sequences of molecular events. However, full knowledge of the mechanism of particular cell functions will require direct measurement of the interplay of cellular constituents. Therefore, there has been a need to develop methods that can yield chemical and molecular information in time and space in living cells, while allowing the integration of information from biochemical, molecular and genetic approaches at the cellular level.


Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2010 ◽  
Vol 5 (S 01) ◽  
Author(s):  
R Winkler ◽  
M Clemenz ◽  
M Bloch ◽  
A Foryst-Ludwig ◽  
C Böhm ◽  
...  

1987 ◽  
Vol 58 (03) ◽  
pp. 936-942 ◽  
Author(s):  
Lindsey A Miles ◽  
Edward F Plow

SummaryGlu-plasminogen binds to platelets; the monocytoid line, U937, and the human fetal fibroblast line, GM1380 bind both plasminogen and its activator, urokinase. This study assesses the interaction of these fibrinolytic proteins with circulating human blood cells. Plasminogen bound minimally to red cells but bound saturably and reversibly to monocytes, granulocytes and lymphocytes with apparent Kd values of 0.9-1.4 μM. The interactions were of high capacity with 1.6 to 49 × 105 sites/cell and involved the lysine binding sites of plasminogen. Both T cells and non-rosetting lymphocytes and two B cell lines saturably bound plasminogen. Urokinase bound saturably to gianulocytes, monocytes, non-rosetting lymphocytes and a B cell line, but minimally to T cells, platelets and red cells. Therefore, plasminogen binding sites of high capacity, of similar affinities, and with common recognition specificities are expressed by many peripheral blood cells. Urokinase receptors are also widely distributed, but less so than plasminogen binding sites. The binding ol plasminogen and/ or urokinase to these cells may lead to generation of cell- associated proteolytic activity which contributes to a variety of cellular functions.


Sign in / Sign up

Export Citation Format

Share Document