A preliminary study of the influence of water potential on sclerotium germination in Sclerotinia sclerotiorum

1977 ◽  
Vol 55 (1) ◽  
pp. 8-11 ◽  
Author(s):  
R. A. A. Morrall

Sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary buried in a heavy clay soil at 15 °C germinated over a range of moisture levels from 15% to 50%. A method of germinating sclerotia held at constant matric water potentials was tested. Sclerotia were placed in soil in bags of a semipermeable membrane; the bags were immersed in solutions of polyethylene glycol 20 000.Germination occurred between 0 and −7.5 bars but not at lower potentials.

Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


1969 ◽  
Vol 47 (11) ◽  
pp. 1761-1764 ◽  
Author(s):  
Merrill R. Kaufmann

The effect of nearly constant water potential on germination of citrus, sunflower, and lettuce seeds was studied. Water potential equilibration was achieved by placing soil above a cellulose acetate membrane which was in contact with a solution of polyethylene glycol-6000. Selection of solute potentials in the solution resulted in controlled water potentials in the soil over a range of 0 to −14.9 bars for citrus and 0 to −8.0 bars for sunflower and lettuce. The water stress experienced by germinating seeds in this system is largely the result of a matric effect rather than a solute effect.Citrus seeds germinated at water potentials as low as −4.7 bars and lettuce at −4.1 bars, but sunflower germinated at −8.0 bars. Sunflower germinated as rapidly at −4.1 bars as lettuce at −2.3 bars, both reaching 50% germination at about 8 days. Citrus germinated much more slowly, requiring 26 days at 0 bars.


1985 ◽  
Vol 63 (12) ◽  
pp. 2364-2368 ◽  
Author(s):  
R. C. Ploetz ◽  
D. J. Mitchell

The survival of Rhizoctonia solani AG 4 was monitored in a natural Arredondo fine sand incubated under controlled water potentials. In general, survival was greater in soils held at intermediate water potentials of −2 to −15 bars (1 bar = 100 kPa) than in moister or drier soils. Saprophytic colonization of rye stem pieces by R. solani AG 4 in artificially infested, natural soil occurred at five water potentials ranging from −0.05 to −15 bars. Colonization did not occur at −1500 bars. Maximum colonization at any of the former water potentials was detected 1 or 2 days after the beginning of an experiment, but it decreased rapidly after 3 days.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1 ◽  
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-838 ◽  
Author(s):  
D.T. Booth

This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Günther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3 months and dehydrating conditions for the last 3 months of the 6-month aestivation period, and cocoons were not formed until after 3 months of aestivation. After 6 months, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than –400 kPa, but lost water when placed on sand with a water potential of –1000 kPa.


1972 ◽  
Vol 52 (4) ◽  
pp. 417-423 ◽  
Author(s):  
G. W. BRUEHL ◽  
B. CUNFER ◽  
M. TOIVIAINEN

Cephalosporium gramineum grew on agar media at osmotic water potentials from − 1.3 bars to between − 98 and − 112 bars. The growth of antibiotic-producing (+) and nonproducing (−) isolates was affected equally by water potential. Antibiotic production was detected by bioassay over the entire range of significant growth (to about − 83 to − 98 bars). Production of antibiotic relative to the growth rate of C. gramineum was least when the fungus grew fastest and most when the fungus was under moderate water stress (between − 27 and − 55 bars). When straws infested with C. gramineum were incubated on soil at 15 C at various water potentials, + isolates had the least advantage over − isolates on water-saturated soil (near 0 bar) and at the driest condition tested (−258 bars). In contrast, antibiotic-producing isolates had the greatest survival advantage between − 10 and − 67 bars, which corresponds to the range of water potentials within which antibiotic production was greatest relative to mycelial growth. The vigor of C. gramineum in straw on water-saturated soil indicates coexistence with bacteria; its performance between about − 10 and − 137 bars indicates that relatively xerophytic soil fungi are its most severe antagonists in nature.


1972 ◽  
Vol 52 (4) ◽  
pp. 619-623 ◽  
Author(s):  
M. C. PAWLOSKI ◽  
C. F. SHAYKEWICH

Germination rate of wheat was determined at several water potentials (−0.8, −5.3, −7.8, and −15.3 bars) on two soils and a semipermeable membrane. Germination rate decreased as matric potential decreased. At a given water potential, germination rates were the same for both soils but germination on the membrane system was faster than on soils. Hydraulic conductivity was different on the two media, indicating that the hydraulic conductivity is an important component of soil water stress. Germination rate was not affected by decreasing water potential to −7.8 bars on each medium. At the −15.3-bar potential germination rate was considerably slower.


1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


1994 ◽  
Vol 21 (3) ◽  
pp. 377 ◽  
Author(s):  
A Alvino ◽  
M Centritto ◽  
FD Lorenzi

Pepper (Capsicum annuum L.) plants were grown in 1 m2 lysimeters under two different water regimes in order to investigate differences in the spatial arrangements of the leaves and to relate this to daily assimilation rates of leaves of the canopy. The control regime (well-watered (W) treatment) was irrigated whenever the accumulated 'A' pan evaporation reached 4 cm, whereas the water-stressed (S) treatment was watered whenever the predawn leaf water potential fell below -1 MPa. During the growing cycle, equal numbers of sun and shade leaves were chosen from the apical, middle and basal parts of the canopy, corresponding to groups of leaves of increasing age. The CO2 exchange rate (CER) was measured at 0830, 1230 and 1530 hours on 8 days along the crop cycle, on leaves in their natural inclination and orientation. Leaf water potentials were measured on apical leaves before dawn and concurrently with gas exchange measurements. Control plants maintained predawn leaf water potential at -0.3 MPa, but S plants reached values lower than -1.2 MPa. Midday leaf water potentials were about twice as low in the S plants as in the controls. Water stress reduced LA1 during the period of crop growth, and dry matter production at harvest. Stressed apical leaves appeared to reduce stress by changing their inclination. They were paraheliotropic around midday and diaheliotropic at 0830 and 1530 hours. The CER values of the S treatment were significantly lower than those of the W treatment in apical and middle leaves, whereas the CER of basal leaves did not differ in either treatments. In the S treatment, reduction in the CER values of sunlit apical leaves was more evident in the afternoon than at midday or early in the morning, whereas basal leaves were less affected by water than basal stress leaves if sunlit, and negligibly in shaded conditions.


Sign in / Sign up

Export Citation Format

Share Document