Vesicular–arbuscular mycorrhiza influence growth but not mineral concentrations in seedlings of eight sweetgum families

1979 ◽  
Vol 9 (2) ◽  
pp. 218-223 ◽  
Author(s):  
R. C. Schultz ◽  
P. P. Kormanik ◽  
W. C. Bryan ◽  
G. H. Brister

Seedlings of eight half-sib sweetgum (Liquidambarstyraciflua L.) families were grown for 6 months in a fumigated soil mixture, with or without inoculum from a mixture of Glomusmosseae and Glomusetunicatus fungi, at levels of 140, 280, 560, and 1120 kg/ha of 10–10–10 fertilizer. All seedlings received three additions of 187 kg/ha of N during the growing season. Inoculated seedlings had significantly greater biomass, height, and stem diameters at each fertilizer level than nonmycorrhizal control seedlings. Significant differences in growth occurred between families in mycorrhizal plants. However, fertilizer did not significantly affect growth or nutrient uptake of the seedlings. Inoculation with VA mycorrhizal fungi did not increase N, P, K, or Mg concentrations in the leaves, stems, or roots. Leaves of VA mycorrhizal seedlings had higher concentrations of calcium but stems and roots had lower concentrations of this element than the nonmycorrhizal seedlings. Seedlings with endomycorrhizae contained higher absolute quantities of each nutrient simply because of their greater biomass. The results suggest that the role of VA mycorrhizal fungi in the initial growth of sweetgum seedlings may be the result of physiological stimuli other than increased nutrient uptake.

1982 ◽  
Vol 12 (4) ◽  
pp. 829-834 ◽  
Author(s):  
Richard C. Schultz ◽  
Paul P. Kormanik

Eight hardwood species were grown under two sets of fertilizer and vesicular–arbuscular mycorrhizae (VAM) treatments. In the first study three treatments of 140, 560, and 1120 kg/ha of 10– 10– 10 (% N, P2O5, and K2O, respectively) fertilizer were added to fumigated soil with or without a mixture of Glomusmosseae Nicol. and Gerd. and Glomusetunicatus Becker and Gerd. (GM). In the second study, seedlings were grown with VAM treatments of (i) the same Glomus (GM) mixture as in study 1, (ii) Glomusfasiculatus (Thaxter) Gerd. and Trappe (GF), or (iii) mixed cultures of several Glomus and Gigaspora species (GG). A fertilizer treatment of 280 kg/ha of 10– 10– 10 was added to all seedlings. All treatments, in both studies, also received 10 equal applications of NH4NO3, totaling 1680 kg/ha, during the growing season. No single nutrient was consistently higher in nonmycorrhizal or VAM seedlings in either study and no symbiont produced consistently high concentrations of all nutrients in all species. Uninoculated seedlings frequently had higher N, K, Ca, and Mg concentrations than VAM seedlings. Inoculated seedlings generally had higher total P concentrations than uninoculated seedlings. For uninoculated seedlings of five of the species, P concentrations increased with higher fertility levels. Seedlings inoculated with GM and GG had higher P concentrations than those inoculated with GF. In numerous instances, uninoculated seedlings had higher mineral concentrations than VAM seedlings even though the uninoculated seedlings were always the smallest. This suggests that VAM provide stimulation other than or in addition to the enhanced nutrient uptake.


1977 ◽  
Vol 23 (12) ◽  
pp. 1663-1668 ◽  
Author(s):  
R. N. Ames ◽  
R. G. Linderman

The vesicular-arbuscular (VA) mycorrhizal fungi of commercially grown Easter lily (Lilium longiflorum Thunb.) were studied. Soil and root samples were collected monthly from March through September 1975 from five fields in the coastal area of southern Oregon and northern California. Soil seivings were inoculated onto clover, onion, and lily to cause infections resulting in the production of many new mycorrhizal spores facilitating identification. Four VA mycorrhizal species were found: Acaulospora trappei, A. elegans, Glomus monosporus, and G. fasciculatus. All four VA species infected Easter lily, clover, and onion. Acaulospora trappei and G. fasciculatus were the most commonly isolated species from all five fields.Mycorrhizal infections in roots of field-grown lilies were sparse and presumably young in March and gradually increased in size and number until September when bulbs were harvested. Over 75% of each root system became infected with mycorrhizae in fields with all four fungal species, and those levels were reached by July. In fields with only two mycorrhizal species, usually 50% or less of each root system was infected, even by the end of the growing season.


1993 ◽  
Vol 41 (6) ◽  
pp. 733 ◽  
Author(s):  
KA Meney ◽  
KW Dixon ◽  
M Scheltema ◽  
JS Pate

Species of Cyperaceae and Restionaceae were examined for presence of vesicular-arbuscular (VA) mycorrhizal fungi in natural habitat in south-west Western Australia. VA mycorrhizal fungi were detected in roots of two species of Cyperaceae (Lepidosperma gracile and Tetraria capillaris), and two species of Restionaceae (Alexgeorgea nitens and Lyginia barbata), all representing the first records for these genera. Results indicated a very short seasonal period of infection, with VA mycorrhizal fungi representing the genera Acaulospora, Glomus, Scutellospora and Gigaspora identified in roots. VA mycorrhizal fungi were prominent from late autumn to early winter (April-June) and in up to 30% of the young, new season's roots as they penetrated the upper 10 cm region of the soil profile. Mycorrhizal infection was not evident during the dry summer months. This study suggests that mycorrhizas may be important for nutrition of these hosts in these environments but their activity is restricted to a brief period of the growing season.


1982 ◽  
Vol 33 (2) ◽  
pp. 389 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Vesicular arbuscular (VA) mycorrhizas are roots infected with particular soil fungi which form symbiotic associations. It is often assumed that VA mycorrhizal fungi could be used to increase the efficiency of phosphate fertilizers in agriculture. Our principal concern is the question: 'Can the symbiosis be exploited on a large scale?'. VA mycorrhizas increase nutrient uptake, and hence plant growth, by shortening the distance that nutrients must diffuse through soil to the root. Mycorrhizal roots do not appear to have a lower threshold concentration of nutrients for absorption from solution than do non-mycorrhizal roots. Most soils contain VA mycorrhizas. Hence, for plant growth to respond to inoculation with VA mycorrhizal fungi, agricultural soils must have either a low incidence of indigenous VA mycorrhizal fungi or alternatively, species which are less effective than the inoculant fungi in their ability to stimulate nutrient uptake by plants. The distribution of species of VA mycorrhizal fungi varies with climatic and edaphic environment, as well as with land use. However, the factors which control their distribution are poorly understood. Differences among VA mycorrhizal fungi in their ability to increase nutrient uptake appear to be due to differences in their ability to form mycorrhizas rapidly and extensively. The importance of other differences among the fungi, such as in the absorption of nutrients from solution or in the distribution and amount of external mycelium, has yet to be clearly demonstrated. Inoculant VA mycorrhizal fungi must be capable of persisting in soils at a high inoculum potential, as well as being able to increase nutrient uptake. Until now, little attention has been paid to characteristics which enable the fungi to persist after inoculation. We are critical of many of the methods employed in experiments aimed at selecting 'efficient' VA mycorrhizal fungi. For practical purposes, selection can only be achieved by means of comparisons performed in untreated field soils, with phosphorus supply limiting plant growth. Because the form of inoculum can affect the relative abilities of VA mycorrhizal fungi to infect and improve plant growth, appropriate inocula are needed for each agricultural situation. The survival of many species of fungi in various types of inocula requires further study so that procedures can be developed for introducing particular fungi into agricultural soils. This review emphasizes many gaps in our knowledge. For example, we need more information on how and to what extent species or strains of VA mycorrhizal fungi differ in their ability to increase plant growth. We know even less about their beneficial effects in years following that of field inoculation. The ecology of indigenous VA mycorrhizal fungi in field soils has also been largely neglected. These and other deficiencies preclude any immediate recommendations for large-scale inoculation with selected VA mycorrhizal fungi.


1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.


1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.


2014 ◽  
Vol 23 ◽  
pp. 47-62
Author(s):  
J. Philip Robinson ◽  
K. Nithya ◽  
R. Ramya ◽  
B. Karthikbalan ◽  
K. Kripa

Plant growth and physiological response of sesame (Sesamum indicum L.) were studied in controlled environment using normal soil and indigenous Vesicular-arbuscular mycorrhiza (VAM) fungi treated soil. The seedlings of Zea mays were inoculated with Giguspora species of VAM (Glomus fasiculatum) and the inoculum was multiplied with help of Zeamays seed bed. Sesame seeds were then inoculated into the bed and it was found that the plant height, shoots lengths, roots, biomass of shoot and roots were considerably increased in the mycorrhizal plants. The effect of VAM infection was assessed in pot experiment. In this comparative study, specific mycorrhizal fungi had consistent effects on various growth parameters such as the number of leaves, number of roots, shoot length, biomass of shoot and roots and biochemical parameters were observed at various time intervals by statistical analysis using two way ANOVA, it was confined with mycorrhizal and non-mycorrhizal infected plants. It was found that the ability of isolates to maintain the plant growth effectively in the case of mycorrhizal seedlings shows a maximum absorbtion of 0.77 ±0.2, shoot length is about 8.34 ±0.2, count of root and leaves are about 8.10 ±0.3, 5.6 ±0.3 respectively under mycorrhizal infection in 30days of analysis and had a positive effect on the growth at all intervals. Biochemical analysis were carried out to estimate the total chlorophyll, chrophyll A, chlorophyll B and Carotenoids contents and it was analyzed to be 9 ±0.5 mg/g, 8.3 ±0.5 mg/g, 3.6 ±0.5 mg/g, 4 ±0.3 mg/g respectively. At the 30th day of analysis for the mycorrhizal plants, it was found to be high in mycorrhizal seedlings which shows the symbiosis had improved the nutrient uptake of cultivated plants. Nevertheless G. fasiculatum was found to be the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Two species of vesicular-arbuscular (VA) mycorrhizal fungi differed in their ability to infect subterranean clover roots when soil pH was changed by liming. In a glasshouse experiment, Glomus fasciculatum infected extensively at each of four levels of soil pH (range 5.3-7.5). Glomus sp. (WUM 16) only infected extensively at the highest pH level. Liming the soil depressed plant growth, but this effect was almost entirely overcome by inoculation with G. fasciculatum. In the second experiment, Glomus sp. (WUM 16) failed to spread from existing infection within roots of subterranean clover when soil pH was 5.3 or lower. The lack of spread of infection was associated with an inability of hyphae of this fungus to grow in the soil used unless it was limed to give a pH at least greater than 5.3.


Sign in / Sign up

Export Citation Format

Share Document