Mucilaginous film production by plant cells immobilised in a polyurethane or nylon matrix

1985 ◽  
Vol 63 (12) ◽  
pp. 2357-2363 ◽  
Author(s):  
M. J. C. Rhodes ◽  
R. J. Robins ◽  
R. J. Turner ◽  
J. I. Smith

The surface features of plant cells immobilised in a matrix of either reticulated polyurethane foam or nylon fibre have been examined with the scanning electron microscope. It has been found that both cells and matrix are enveloped in a thin film, the appearance of which is very dependent on the method by which material is prepared for scanning electron microscopy. The structure is severely damaged by fixation and dehydration. Only in specimens examined in the frozen hydrated state is a structure seen compatible with that observed with the light microscope. From the way the appearance of the film is affected by different methods of preparation for the scanning electron microscope, it is suggested that the film is a hydrated mucilage. The importance of this film for the retention of cells within the matrix is discussed.

2020 ◽  
Vol 11 (2) ◽  
pp. 486-492
Author(s):  
Jens Anibal Juul ◽  
Vegard Asgeir Forsaa ◽  
Tor Paaske Utheim ◽  
Endre Willassen

We present a case report of periocular Loa loa. The key feature of L. loa distinguishing it from other human filarial parasites are cuticular bosses, which are presented in images from a light microscope and a scanning electron microscope. The cuticular bosses could be divided into three subtypes not previously described.


1981 ◽  
Vol 64 (1) ◽  
pp. 199-224
Author(s):  
John E Kvenberg

Abstract Larval stored product beetle mandibles were studied by comparing images made by scanning electron microscopy with those made by conventional light microscopy. Discussion of morphological characteristics is based on illustrations of 25 species


1968 ◽  
Vol 100 (1) ◽  
pp. 1-4 ◽  
Author(s):  
E. H. Salkeld ◽  
A. Wilkes

A recent development in microscopy certain to be of great interest to entomologists is the Scanning Electron Microscope. This machine overcomes the difficulties of studying solid surfaces with a standard light microscope and the problems of the extremely small limits of penetration of the electron microscope. This new microscope focuses a stream of electrons into a beam as small as 1 μ in diameter which moves over the surface of the specimen in a regular pattern, causing secondary radiations to emerge from the surface of the specimen. These are collected by a very sensitive detector and converted to an image similar to that produced by a television tube.


1985 ◽  
Vol 77 (1) ◽  
pp. 143-153
Author(s):  
C.J. Harrison ◽  
E.M. Jack ◽  
T.D. Allen ◽  
R. Harris

A technique has been developed to examine the same G-banded human metaphase chromosomes, first in the light microscope and then in the scanning electron microscope (SEM). A structural involvement in chromosome banding was confirmed by a positional correlation between the G-positive bands observed in the light microscope and the circumferential grooves between the quaternary coils of the metaphase chromosomes, observed in the SEM. In further support of this the regions between the grooves showed a positional relationship with the G-negative or reverse (R) bands. The examination of slightly extended metaphase chromosomes in the light microscope demonstrated that the G-banding pattern corresponded to that described by the Paris nomenclature for metaphase chromosomes. The arrangement of the circumferential grooves of the same chromosomes, observed in the SEM, was shown to relate to that described by the Paris nomenclature for prometaphase chromosomes. Therefore, using the SEM it is possible to demonstrate the details of prometaphase banding in metaphase chromosomes.


1974 ◽  
Vol 57 (6) ◽  
pp. 1235-1247
Author(s):  
Paris M Brickey ◽  
John S Gecan

Abstract Eleven stored product beetles were examined for surface features of the beetle elytron, using a scanning electron microscope. The 3 characteristics, sculpturing pattern, setae, and setal pits, were well defined and could be used to distinguish the species examined. The scanning electron microscope can give 3-dimensional images at magnifications up to 20,000 ×, in contrast with the light microscope which has a maximum magnification of 1000 ×.


Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Author(s):  
Mamaeva S.N. ◽  
Vinokurov R.R. ◽  
Munkhalova Ya.A. ◽  
Dyakonova D.P. ◽  
Platonova V.A. ◽  
...  

Currently, due to the intensive development of high-tech science-intensive medical and research devices, more and more attention is paid to the development of diagnostics of rare and difficult to diagnose diseases. It is known that among numerous nephropathies, hematuria may be the only symptom of kidney and urinary tract diseases, which complicates their diagnosis and treatment. In order to develop new approaches for the diagnosis of nephropathies, the authors have been studying the morphology of red blood cells in the blood and urine of children and adults using a scanning electron microscope for several years. The paper presents the results of studies of children with various kidney diseases, including IgA-nephropathy, and chronic glomerulonephritis. Scanning electron microscopy was used for the first time to detect nanoparticles on the surface of red blood cells, the size of which is comparable to the size of viruses, which became the basis for one of the authors ' assumptions, namely, the possible transport of certain types of viruses by red blood cells. Thus, some kidney diseases could be considered virus-associated. This paper presents for the first time the results of determining the glomerular filtration rate of both kidneys separately in the study of separate kidney function and of the study of urine smears obtained during catheterization of the ureters in patients with hydronephrosis of one of the kidneys by scanning electron microscopy. As in previous studies, nanoparticles were found on the surface of red blood cells, which leads to the conclusion about the possible viral nature of the disease of the considered patient. In addition, smear images obtained using a microscope showed a significant difference in the elements of the right and left kidneys urine, which did not contradict the data on the study of glomerular filtration rate. According to the authors, the capabilities of the scanning electron microscope can be applied in fundamental research of kidney diseases at the cellular and molecular levels, forming new ideas about their origin, as well as on the basis of which new methods of non-invasive diagnostics can be built.


Author(s):  
J R Santos-Mallet ◽  
T D Balthazar ◽  
A A Oliveira ◽  
W A Marques ◽  
A Q Bastos ◽  
...  

Abstract The aim of the present study was to describe the morphology of the eggs of Culex (Culex) saltanensis Dyar that occurs in the Neotropical region. Eggs of the Cx. (Cux.) saltanensis were collected at the Mata Atlântica FIOCRUZ campus, fixed in 1% osmium tetroxide, prepared for mounting on metal supports, observed under a scanning electron microscope, and described morphologically. The eggs had a coniform shape with a length of approximately 0.5 mm (505–510 µm) and a width in the median portion of 117 µm (113–123 µm). Upper portion is lined with tubers of irregular shape and varying sizes (0.64–1.31 µm), located on a cross-linked matrix forming bands observed under optical microscopy. The micropyle is encased in a necklace of approximately 6.6-µm plates arranged in a flower-like shape. Comparing Cx. (Cux.) saltanensis eggs with several species of different genera, important divergent characteristics can be observed. However, this study points to the need for new descriptions of eggs of species belonging to the same subgenus in order to analyze if there will be differences between them. Culex (Cux.) saltanensis eggs have particular characteristics not observed in eggs of other Culicidae genera.


1972 ◽  
Vol 3 (3) ◽  
pp. 181-188 ◽  
Author(s):  
Christine Dahl

AbstractA method for preparation of alcohol-preserved culicid larvae for Scanning Electron Microscope (SEM) studies is described. It is based on dehydration by ethanol-xylol and fast evaporation of xylol in +8o° C. for ten minutes. For taxonomic studies such as examination of pecten teeth, comb scales and microtrichiae in magnifications up to 6oooX the method is suitable. For studies of receptor structures on hair-tufts and microstructures of the body integument alcohol preserved material is less satisfactory. The microstructure of the comb scales is figured and their function discussed. Differences in the ultrastructure of the abdominal hair-tufts are pointed out.


Sign in / Sign up

Export Citation Format

Share Document