Interaction of Rhizobium leguminosarum and Fusarium solani f.sp. pisi on pea affecting disease development and phytoalexin production

1989 ◽  
Vol 67 (6) ◽  
pp. 1698-1701 ◽  
Author(s):  
Usha Chakraborty ◽  
B. N. Chakraborty

Pathogenicity of Fusarium solani f.sp. pisi (F. R. Jones) Snyd. & Hans was tested on five cultivars of pea (Pisum sativum L.) under identical conditions; the fungus was more virulent on cv. Arkel and less virulent on cv. Sweet Stringless. Bacterization of seeds with Rhizobium leguminosarum biovar vicieae was highly effective in reducing the severity of root rot of pea. In vitro tests with F. solani f.sp. pisi and R. leguminosarum biovar vicieae showed no antagonistic effects on solid medium. However, growth of both microorganisms was retarded in dual culture. Phytoalexins (pisatin and 4-hydroxy-2,3,9-trimethoxypterocarpan) were isolated from both Fusarium- and Rhizobium–Fusarium-infected pea epicotyls; 4-hydroxy-2,3,9-trimethoxypterocarpan was present in a greater amount in the latter than in the former, while pisatin concentration was similar in samples from both treatments.

2016 ◽  
Vol 8 (2) ◽  
pp. 849-854
Author(s):  
M. Singh ◽  
Sushil Sharma ◽  
Mukesh Kumar

An experiment was carried out to find out the effective management practices to control the recently recorded pathogen (Fusarium solani) inciting root rot disease in Bael. Rampant incidence due to this pathogen is resulting in excess damage and reduction in acreage. Out of six fungicides screened in vitro, Topsin-M and Bavistin stood at first place in inhibiting the mycelial growth of F. solani. Topsin-M showed 100% inhibition at 50 ppm concentration whereas Bavistin showed 100% inhibition at 150 ppm concentration. Bavistin and Topsin-M as seed dressers effectively protected pre and post emergence seedlings mortality to the tune of 68.75 and 70.95%; 65.00 and 67.54%, respectively. Pre-sowing drenching of soil with Bavistin (0.4%) reduced the pre-emergence mortality from 26.50 to 8.25% and post-emergence mortality from 39.00 to 16.25%. The integration of seed treatment and pre-sowing drenching resulted in 72.51% control of pre emergence mortality and 82.92% control of post emergence mortality. In dual culture method, maximum inhibition of mycelial growth was recorded with Trichoderma harzianum (72.18%) followed by T. viride (67.70%). Glomus mosseae in combination with T. harzianum was found very effective against F. solani under screen house conditions as minimum pre emergence mortality (10.00%) and post emergence mortality (13.25%) against control where the values were 27.25% and 40.25%, respectively. The studies and results compiled here in provide an explanation for the potential of selected fungicides and antagonists in the control of bael root rot disease.


1977 ◽  
Vol 89 (1) ◽  
pp. 235-238 ◽  
Author(s):  
P. E. Russell ◽  
A. E. A. Mussa

SummaryTwo systemic fungicides, benomyl and thiabendazole, were more active than the non-systemic fungicide Drazoxolon in inhibiting fungal growth in vitro. A similar pattern was obtained in glasshouse trials with benomyl and thiabendazole giving adequate protection at low concentrations while Drazoxolon was ineffective unless applied at 50% the commercial product concentration. A field trial using thiabendazole, Drazoxolon and a mixture of benomyl and thiram confirmed the glasshouse results.Some phytotoxicity was noticed with high concentrations of both benomyl and thiabendazole, but satisfactory disease control was achieved using fungicide concentrations which did not induce phytotoxicity.


Author(s):  
Anam Choudhary ◽  
Shabbir Ashraf

AbstractThe present study was carried out to evaluate the effect of bioagents and organic amendments in suppressing the dry root rot of mungbean incited by Rhizoctonia bataticola. The locally isolated pathogen and fungal biocontrol agents were identified based on morphological and molecular characterization. These identified bioagents were tested in vitro, and the highest mycelial inhibition was recorded in dual culture assay by Trichoderma harzianum (74.44%), and among organic amendments, maximum mycelial inhibition was found in neem cake (61.11%). In a greenhouse study, T. harzianum + neem cake effectively enhanced the percent germination (93.33%) and decreased the percent disease mortality (11.67%) than the other treatments. The morphological parameter like plant height (57.50 cm), dry weight (22.83 g) root nodules (51), pods/plant (58), and 100-seed weight (5.78 g) were found to be at the maximum in this combined application. Physiological pigments viz. chlorophyll (2.41 mg/g) and carotenoids (0.19 mg/g), protein content (5.85 mg/g), and leghemoglobin (11.75 mg/g) were also found to be maximum in T. harzianum + neem cake and minimum phenol content (1.41 mg/g). The study concludes that T. harzianum + neem cake can be recommended as an effective approach for the management of dry root rot of mungbean.


Holzforschung ◽  
2012 ◽  
Vol 66 (7) ◽  
pp. 883-887 ◽  
Author(s):  
Jaejung Lee ◽  
Nayoon Huh ◽  
Joo Hyun Hong ◽  
Beom Seok Kim ◽  
Gyu-Hyeok Kim ◽  
...  

Abstract The antagonistic potential of Trichoderma spp. for biological control of wood-damaging fungi was investigated in the present paper. In vitro assays to investigate antifungal characteristics of Trichoderma spp. were conducted with various wood-damaging fungi. Exo-chitinase activity of the isolates was also measured. Three typical wood decayers and three sap-stainers served as target fungi. The antagonistic abilities of each Trichoderma species differed markedly according to the target fungus. The growth inhibition rates shown by the non-volatile metabolites against the wood decayers reached 100% for Trichoderma harzianum KUC1459. The antibiotics produced by Trichoderma dorotheae KUC5027, a recently reported species of Trichoderma, revealed strong antagonistic effects against sap-stainers. Trichoderma gamsii KUC1747 effectively inhibited the growth of all wood-damaging fungi in dual culture tests. The exo-chitinases of Trichoderma longibrachiatum KUC1540, Trichoderma aureoviride KUC1335, and T. harzianum KUC1459 showed significantly high activity.


2020 ◽  
Vol 46 (3) ◽  
pp. 205-211
Author(s):  
Ciro Hideki Sumida ◽  
Lucas Henrique Fantin ◽  
Karla Braga ◽  
Marcelo Giovanetti Canteri ◽  
Martin Homechin

ABSTRACT Despite the favorable edaphoclimatic conditions for avocado production in Brazil, diseases such as root rot caused by the pathogen Phytophthora cinnamomi compromise the crop. With the aim of managing root rot in avocado, the present study aimed to evaluate chemical and biological control with isolates of Trichoderma spp. and Pseudomonas fluorescens. Thus, three assays were conducted to assess: (i) mycelial inhibition of P. cinnamomi by isolates of Trichoderma spp. and P. fluorescens from different crop systems; (ii) effect of autoclaved and non-autoclaved metabolites of P. fluorescens, and (iii) chemical or biological treatment of avocado seedlings on the control of root rot under field conditions. The isolates of Trichoderma spp. from maize cultivation soil and the commercial products formulated with Trichoderma presented greater antagonism (p <0.05) to the pathogen P. cinnamomi in the in vitro tests. Similarly, non-autoclaved metabolites of P. fluorescens presented antagonistic potential to control P. cinnamomi. Under field conditions, the fungicide metalaxyl and the bioagents showed effectiveness in controlling P. cinnamomi, as well as greater root length and mass. Results demonstrated potential for the biological control of avocado root rot with Trichoderma spp. and P. fluorescens.


2017 ◽  
Vol 47 (1) ◽  
pp. 102-109
Author(s):  
Alexandre Dinnys Roese ◽  
Gloria Soriano Vidal ◽  
Erica Camila Zielinski ◽  
Louise Larissa May De Mio

ABSTRACT Trichoderma is a biological control agent used to improve the resistance to diseases, which may also estimulate plant growth. Commercial products with Trichoderma are available in different countries, but most of them are based on conidial suspension. This study aimed at evaluating the efficiency of native Trichoderma populations collected from different production systems and applied to the soil by using two methods: conidial suspension and inoculated oat grains. The efficiency of native Trichoderma populations collected from conventional crop and agropastoral and agrosilvopastoral systems in a long-term field experiment was evaluated. The populations efficiencies were evaluated by in vivo tests that assessed the control of soybean damping-off caused by Rhizoctonia solani, plant height and soil colonization with the antagonist. In vitro tests, such as dual culture and assessment of volatile and non-volatile compounds, were conducted to study the mode of action of the populations. Some native Trichoderma populations were as efficient as those from a commercial product in all tests. Compared to conidial suspension, Trichoderma spp. inoculated through oat grains promoted a greater damping-off control, higher plants and more colony-forming units per gram of soil after 3 months of application. Native populations performed equally well or even better than the commercial strain, and the use of a substrate that supports the Trichoderma growth was more efficient than the conidial suspension method.


2017 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Srijana Bastakoti ◽  
Shiva Belbase ◽  
Shrinkhala Manandhar ◽  
Charu Arjyal

Soil borne pathogenic fungi are of major concern in agriculture which significantly decreases the plant yield. Chemically controlled plant imposes environmental threats potentially dangerous to humans as well as other animals. Thus, application of biological methods in plant disease control is more effective alternative technique. This study was carried out to isolate Trichoderma species from soil sample and to assess its in vitro biocontrol efficacy against fungal pathogens viz. Sclerotium rolfsii, Sclerotionia sclerotiorum, Fusarium solani and Rhizoctonia solani. Biocontrol efficacy testing of isolates against different fungal pathogens was performed by dual culture technique.In this study, 5 different Trichoderma species were isolated from 26 various soil samples and were tested against four fungal soil-borne pathogens. Inhibition percentage of radial growth of Sclerotium rolfsii by three of the Trichoderma isolates was found to be 100%; about 62% and 68% of maximum inhibition was observed against Rhizoctonia solani and Fusarium solani respectively whereas Sclerotionia sclerotiorum was inhibited maximum up to 23%. This in vitro study revealed that although Trichoderma species plays an important role in controlling all type of soil borne fungal plant pathogens, however, isolates as biocontrol agent against Sclerotium rolfsii was found to be more efficient in comparison to other pathogens.Nepal Journal of Biotechnology. Dec. 2017 Vol. 5, No. 1: 39-49


2018 ◽  
Vol 3 (02) ◽  
pp. 166-170
Author(s):  
Safdar Kaiser Hasmi ◽  
R. U. Khan

In-vitro effectiveness of various antagonistic fungi namely Aspergillus niger, A. flavus, Trichoderma koningii, T. atroviride, and T. harzianum were evaluated against Rhizoctonia solani by dual culture technique on potato dextrose agar. According to the observation recorded after 5 days, all the treatments were found to be superior over control (R. solani), but among all treatments A. niger was found to the most effective antagonist, with highest radial growth inhibition of the pathogen (77.01 percent), followed by A. flavus, T. harzianum and T. koningii i.e., 66.23, 64.42 and 62.20 percent. While as, T. atroviride was found to be the least effective one with minimum growth inhibition i.e., 42.21 percent. Whereas, at the same time control (R. solani) showed 100 percent radial growth and covered the whole Petri Plate within 5 days. All the bio-control agents were significantly effective to inhibit the sclerotia formation and development, except T. atroviride in which formation of sclerotia was recorded, while in all other treatments complete inhibition of sclerotia formation was recorded after 10 days of incubation.


2019 ◽  
Vol 5 (01) ◽  
pp. 133-137
Author(s):  
Rashmi S. Nigam ◽  
R. U. Khan ◽  
Reshu Singh ◽  
Joginder Singh

Pea (Pisum sativum) is an important leguminous crop in many countries including India. Wilt and root rot of pea is an important and widespread disease that often causes significant reduction in the yield and quality of harvested peas throughout the production areas. It is the most important and widespread disease of pea grown in relatively dry and warm area. In-vitro effectiveness of various antagonistic fungal isolates namely T. harzianum (Th1, Th2, Th3, Th4 and Th5) was evaluated against Fusarium oxysporum f. sp. pisi, Rhizoctonia solani and Pythium ultimum by dual culture technique on potato dextrose agar. According to the observation recorded after 5 days, all the rhizospheric fungal isolates evaluated for their antagonistic potential against wilt and root-rot pathogens, exhibited significant effect on radial growth inhibition of pathogens in comparison to control. Among the fungal isolates, Th3 and Th5 of T. harzianum proved to be most effective in reducing the growth of F. oxysporum f. sp. pisi, R. solani and P. ultimum. It was worthy to note that all rhizospheric fungal isolates visualized an increase in their antagonistic potential over the period of time in subsequent hours of inoculation.


3 Biotech ◽  
2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Mahesh R. Ghule ◽  
Purushottam K. Ramteke ◽  
Sahadeo D. Ramteke ◽  
Prasad S. Kodre ◽  
Amruta Langote ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document