Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae

1989 ◽  
Vol 67 (8) ◽  
pp. 2317-2323 ◽  
Author(s):  
Michael Wisniewski ◽  
Charles Wilson ◽  
Wilbur Hershberger

Interactions between Enterobacter cloacae and Rhizopus stolonifer were evaluated to determine possible mechanisms by which E. cloacae protects peach fruit from postharvest rot caused by R. stolonifer. Inhibition of Rhizopus sporangiospore germination by E. cloacae was dependent on the concentration of the antagonist. Antagonist concentration (1 × 1010 cfu ∙ mL−1) needed to completely inhibit germination was similar to that needed to prevent fruit infection. Significant inhibition of in vitro hyphal growth was achieved at 1 × 105 cfu ∙ mL−1 with simultaneous culturing of the fungus and antagonist. A reduction in inhibition occurred when addition of the antagonist was delayed. The presence of glucose in the growth medium did not prevent attachment of E. cloacae to hyphae and sporangiospores of R. stolonifer. Agglutination assays of sporangiospores by E. cloacae were positive whereas agglutination of cell-wall fragments was less distinct. Data indicate that nutrient competition, perhaps facilitated by bacterial attachment, may play a key role in E. cloacae and R. stolonifer interactions.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 252.1-252
Author(s):  
X. Liu ◽  
F. Tan ◽  
C. Liang

Background:Janus kinases (JAKs) are important regulators of intracellular responses triggered by many key proinflammatory cytokines and are clinically validated therapeutic targets for treating various autoimmune diseases. However, current approved JAK inhibitors failed to achieve maximal clinical benefit in part due to their unfavorable selectivity for individual JAKs such as JAK2 and/or JAK3, leading to dose-limiting toxicities or severe toxicities (e.g., thrombosis, anemia, immune suppression). Selective inhibition of JAK1 and/or TYK2 may minimize or avoid some of the toxicities and potentially offer a better therapeutic window for treating autoimmune diseases. No highly selective JAK1/TYK2 inhibitor has been reported to date.Objectives:Discovery of a highly selective JAK1/TYK2 inhibitor that maximally avoids JAK2 and JAK3 inhibition. We described preclinical characterization of a novel, highly potent and selective JAK1/TYK2 inhibitor TLL018 and its potential utility in treating autoimmune diseases such as rheumatoid arthritis (RA).Methods:Using predicting SAR, TLL018 was designed to achieve exquisite selectivity for both JAK1 and TYK2 while sparing JAK2, JAK3 and other human kinases. Its enzyme and cell activities, kinase selectivity, andin vivoefficacy were assessed in a battery of relevant enzyme, cell and whole blood assays, andin vivoarthritis animal models. Additional preclinical DMPK and toxicology studies were conducted to support its clinical development.Results:TLL018 is a highly potent and selective, orally bioavailable JAK1/TYK2 inhibitor against JAK1 (IC50= 4 nM) and TYK2 (IC50= 5 nM) as measured inin vitrokinase assays with ATP concentrations at individual Km. Its potency against JAK2 or JAK3 is greater than 1 µM. Profiling against a panel of over 350 human kinase showed that TLL018 is exclusively selective for JAK1 and TYK2, with ≥ 90-fold selectivity against all other kinases tested. TLL018 exhibited potent cellular activity for JAK1-mediated IL-6 signaling (IC50= 0.6 µM) with greater than 100-fold selectivity against JAK2-mediated cytokine (e.g., TPO) signaling in human whole blood-based assays.Oral administration of TLL018 demonstrated dose-dependent efficacy in commonly studied rat adjuvant-induced arthritis (rAIA) model and mouse collagen-induced arthritis (mCIA) model. Significant inhibition of inflammation, bone resorption, splenomegaly and body weight change was observed in adjuvant-induced disease in rats. In addition, significant inhibition of inflammation, cartilage destruction, bone resorption and histological signs was demonstrated in collagen-induced arthritis in mice. Noticeably, TLL018 exhibited significant anti-inflammation activity at doses that only blocked JAK1 and TYK2 and exerted little inhibition of JAK2 and JAK3.In support of clinical development of TLL018, preclinical ADME and PK studies and IND-enabling toxicology and safety pharmacology studies were completed, confirming that TLL018 possesses excellent ADME and PK properties, and exhibits a clean on-target safety profile.Conclusion:TLL018 is a highly potent and selective JAK1/TYK2 inhibitor that demonstrated excellent efficacy and tolerability in relevant mouse and rat arthritis models. The collective data of its preclinical pharmacology, PK and toxicology showed a favorable pharmaceutical profile, further supporting its development for treating autoimmune diseases including RA. Clinical evaluation of TLL018 is ongoing.Disclosure of Interests:Xiangdong Liu Shareholder of: I own shares of TLL Pharmaceutical LLC, Employee of: I am employed by TLL Pharmaceutical LLC, Fenlai Tan Shareholder of: I own shares of TLL Pharmaceutical LLC, Employee of: I am employed by TLL Pharmaceutical LLC, Chris Liang Shareholder of: I own shares of TLL Pharmaceutical LLC, Employee of: I am employed by TLL Pharmaceutical LLC


2000 ◽  
Vol 44 (12) ◽  
pp. 3302-3305 ◽  
Author(s):  
Tom Chiller ◽  
Kouros Farrokhshad ◽  
Elmer Brummer ◽  
David A. Stevens

ABSTRACT There have been several reports that the activity of echinocandin antifungal agents is not affected or decreased in the presence of human sera. It is known that these drugs are bound >80% in animal and human sera. The activity of the echinocandin caspofungin (MK-0991), a 1,3-β-d-glucan synthase inhibitor, againstAspergillus fumigatus with and without human sera was studied. Conidia of A. fumigatus in microtest plate wells formed germlings after overnight culture in RPMI 1640. Caspofungin was then added with or without serum, and the germlings were incubated at 37°C for 24 h. Human serum (5%) in RPMI 1640 alone did not significantly inhibit the growth of A. fumigatus in vitro. Caspofungin in RPMI 1640 exhibited dose-dependent inhibition, with concentrations of 0.1 and 0.05 μg/ml inhibiting 24.9% +/− 10.4% and 11.7% +/− 3.6%, respectively (n = 10;P < 0.01). The addition of 5% human serum to caspofungin at 0.1 or 0.05 μg/ml increased the inhibition to 78.6% +/− 5.8% or 58.3% +/− 19.2%, respectively (n = 10; P < 0.01 versus controls and versus the drug without serum). Lower concentrations of serum also potentiated drug activity. The effect of human sera was further seen when using caspofungin that had lost activity (e.g., by storage) against A. fumigatus at 0.1 μg/ml. Inactive caspofungin alone demonstrated no significant inhibition of hyphal growth, whereas the addition of 5% human serum to the inactive drug showed 83% +/− 16.5% inhibition (n = 5; P < 0.01). The restoration of activity of caspofungin was seen at concentrations as low as 0.05% human serum. In contrast to prior reports, this study suggests that human serum acts synergistically with caspofungin to enhance its inhibitory activity in vitro against A. fumigatus.


1979 ◽  
Vol 138 (1) ◽  
pp. 7-16 ◽  
Author(s):  
B Oudega ◽  
W J Oldenziel-Werner ◽  
P Klaasen-Boor ◽  
A Rezee ◽  
J Glas ◽  
...  

Author(s):  
Sayantani Pal ◽  
Tapas Kumar Pal ◽  
Shila Elizabeth Besra

Zinc Oxide (ZnO) nanoparticle was synthesized using rhizome extracts of Zingiber officinale for in-vitro anti-cancer study. The characterization of nanoparticle was confirmed using ultraviolet spectroscopy and Fourier Transfer Infrared Spectroscopy (FTIR). The ZGNPE characterization also used the UV-Vis Spectrophotometer spectrum technique to measure the structural characterization of nanoparticles by determine the absorbance measurement. Cytotoxic activity of myelogenous leukemia cells (K562) and normal human embryonic Kidney (HEK293T) cells were performed by MTT assay. Treated with ZnO nanoparticle with Zingiber officinale extracts (ZGNPE) showed significant inhibition on the cancer cells whereas in normal cell showed insignificant toxicity. Thus, ZGNPE may be used as chemotherapy drug and an enormous medical application with less toxicity in future. Further mechanistic studies are in progress.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1992 ◽  
Vol 67 (01) ◽  
pp. 063-065 ◽  
Author(s):  
Sherryl A M Taylor ◽  
Jacalyn Duffin ◽  
Cherie Cameron ◽  
Jerome Teitel ◽  
Bernadette Garvey ◽  
...  

SummaryChristmas disease was first reported as a distinct clinical entity in two manuscripts published in 1952 (1, 2). The eponym associated with this disorder, is the surname of the first patient examined in detail and reported by Biggs and colleagues in a paper describing the clinical and laboratory features of seven affected individuals (3). This patient has severe factor IX coagulant deficiency (less than 0.01 units/ml) and no detectable circulating factor IX antigen (less than 0.01 units/ml). Coding sequence and splice junctions of the factor IX gene from this patient have been amplified in vitro through the polymerase chain reaction (PCR). One nucleotide substitution was identified at nucleotide 30,070 where a guanine was replaced by a cytosine. This mutation alters the amino acid encoded at position 206 in the factor IX protein from cysteine to serine. The non conservative nature of this substitution, the absence of this change in more than 200 previously sequenced factor IX genes and the fact that the remainder of the coding region of this gene was normal, all provide strong circumstantial evidence in favour of this change being the causative mutation in this patient. The molecular characterization of this novel mutation in the index case of Christmas disease, contributes to the rapidly expanding body of knowledge pertaining to Christmas disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document