Within and among flower sex-phase distribution in Alstroemeria aurea (Alstroemeriaceae)

1995 ◽  
Vol 73 (12) ◽  
pp. 1986-1994 ◽  
Author(s):  
Marcelo A. Aizen ◽  
Alicia Basilio

Although dichogamy is a prevailing feature of the angiosperms, the simultaneous change from male to female phases among hermaphrodite flowers within a plant (i.e., synchronous protandry) has been reported for only a few families (e.g., Araliaceae, Umbelliferae). Here we present an example of synchronous protandry at the ramet level in the Alstroemeriaceae. Dichogamy was analyzed in clonal Alstroemeria aurea at the flower, ramet, and at the whole flowering patch level. Alstroemeria aurea is self-compatible but totally dependent on biotic agents for pollen transfer. There was evidence of strong inbreeding depression expressed during seed development. Comparisons of seed set in open-pollinated flowers with those obtained after hand selfing and outcrossing resulted in a selfing rate of 0.3. At the flower level protandry was complete. The male phase lasted about 4 days and the female phase lasted about 3 days. Between the female and male phase, there was an approximately 1-day long "neuter" phase. Flowering ramets produce a terminal inflorescence bearing one or more whorls of flowers. Within a ramet, flowers of the same order opened within a period of 1–2 days, and male and female phases of different flowers did not overlap. When inflorescences held two whorls of flowers, the ramet went through two alternating non-overlapping male–female cycles. Using spatial autocorrelation techniques, we found little evidence for pairs of neighboring ramets expressing the same sexual phase beyond random expectations at any scale ranging between 0.25 to 15 m. By ensuring pollen interchange between flowering ramets, synchronized protandry at the ramet level could be an important feature in reducing selfing in A. aurea. Key words: Alstroemeria aurea, dichogamy, synchronous protandry, inbreeding depression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Molly E. Dieterich Mabin ◽  
Johanne Brunet ◽  
Heathcliffe Riday ◽  
Lauren Lehmann

Selfing (self-pollination) is the ultimate form of inbreeding, or mating among close relatives. Selfing can create yield loss when inbreeding depression, defined as a lower survival and reproduction of inbred relative to outbred progeny, is present. To determine the impact of selfing in alfalfa (Medicago sativa L.), we quantified the selfing rate of 32 alfalfa seed production fields located in three regions, namely, the Pacific Northwest (PNW), the Central Valley of California (CEV), and the Imperial Valley of California (IMP). Selfing rates (the proportion of selfed seeds) varied between 5.3 and 30% with an average of 12.2% over the 32 seed production fields. In both the parents and their progeny, we observed an excess of heterozygotes relative to Hardy–Weinberg expectations. We detected notable levels of inbreeding in parents (0.231 ± 0.007 parental inbreeding coefficient) and progeny (0.229 ± 0.005). There were a 15% decrease in the number of seeds per stem (seed set) and a 13% decline in the number of seeds per pod in selfed relative to outcrossed stems, but negligible inbreeding depression for pods per raceme and seed weight. The number of racemes on selfed stems increased significantly in fields with greater selfing rates, supporting the presence of geitonogamous or among flower selfing. Despite the significant level of inbreeding depression, seed set did not decrease in fields with higher selfing rates, where the greater number of racemes on the selfed stems increased the seed set. The effects of the field selfing rate on the seed yield metrics were mostly indirect with direct effects of the number of racemes per stem. Available data indicate that the majority of selfing in alfalfa is pollinator-mediated, and thus, eliminating selfing in alfalfa seed production would require the selection of self-incompatible varieties, which, by eliminating inbreeding depression, would provide a 15% potential increase in seed yield and an increase in future hay yield.


1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


1996 ◽  
Vol 12 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Daniel D. N. Beath

ABSTRACTAmorphophallus johnsonii (N. E. Brown) flowers during April in the main rainy season in Ghana. Anthesis starts at dusk with fluid oozing from the upper spadix accompanied by a strong aminoid odour. Just after dark large numbers of carrion beetles (Phaeochrous amplus) and occasional dung fly species (Hemigymnochaeta unicolor and Paryphodes tigrinus) visit the inflorescences. The beetles become trapped in the lower spathe overnight and remain in the spadix until the following evening. Between 1630 and 1645 h the following day, the anthers produce long threads of sticky pollen. The trapped beetles escape just after dark by crawling up the spadix, past the dehisced anthers and fly away from the spadix tip. Marked beetles were seen to transfer pollen from male phase to female phase inflorescences. Successful fertilisation was only effected if pollen was transferred on the same night from a male inflorescence 30 m or less away. Pollen is psilate and typical of beetle pollinated Araceae. Berries ripen approximately 70 d after fertilization and ripen basisetally in the infructescence.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A.-L. Jacquemart ◽  
C. Buyens ◽  
M.-F. Hérent ◽  
J. Quetin-Leclercq ◽  
G. Lognay ◽  
...  

Abstract Many plants require animal pollinators for successful reproduction; these plants provide pollinator resources in pollen and nectar (rewards) and attract pollinators by specific cues (signals). In a seeming contradiction, some plants produce toxins such as alkaloids in their pollen and nectar, protecting their resources from ineffective pollinators. We investigated signals and rewards in the toxic, protandrous bee-pollinated plant Aconitum napellus, hypothesizing that male-phase flower reproductive success is pollinator-limited, which should favour higher levels of signals (odours) and rewards (nectar and pollen) compared with female-phase flowers. Furthermore, we expected insect visitors to forage only for nectar, due to the toxicity of pollen. We demonstrated that male-phase flowers emitted more volatile molecules and produced higher volumes of nectar than female-phase flowers. Alkaloids in pollen functioned as chemical defences, and were more diverse and more concentrated compared to the alkaloids in nectar. Visitors actively collected little pollen for larval food but consumed more of the less-toxic nectar. Toxic pollen remaining on the bee bodies promoted pollen transfer efficiency, facilitating pollination.


2018 ◽  
Vol 285 (1880) ◽  
pp. 20180635 ◽  
Author(s):  
Matthew H. Koski ◽  
Jennifer L. Ison ◽  
Ashley Padilla ◽  
Angela Q. Pham ◽  
Laura F. Galloway

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant–pollinator mutualism, acting as functional parasites to C. americana . It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1509
Author(s):  
Noemi Tel-Zur ◽  
Tamar Keasar

Heterodichogamous reproduction in plants involves two flowering morphs, reciprocal in their timing of male and female sexual functions. The degree of synchrony in floral sex phase, within and between individuals of each morph, determines the flowers’ potential fertilization partners. Complete within-morph synchrony enables across-morph mating alone, whereas unsynchronized floral sex phases may allow fertilization within a plant individual (geitonogamy) or within a morph. We documented the disruption of flowering synchrony in the heterodichogamous Ziziphus spina-christi towards the end of its seven-month flowering season. This desert tree has self-incompatible, protandrous, short-lived (2-day) flowers that open before dawn (‘Early’ morph) or around noon (‘Late’ morph). We counted flowers in the male and female phase on flowering branches that were sampled monthly during the 2016–2018 flowering seasons. In 2018, we also tagged flowers and followed their sex-phase distributions over two days at the start, middle, and end of the season. The switch to the female phase was delayed at the end-season (November-December), and 74% of the flowers did not develop beyond their male phase. Differences in male-phase duration resulted in asynchrony among flowers within each tree and among trees of both flowering morphs. Consequently, fertilization between trees of the same morph becomes potentially possible during the end-season. In controlled hand-pollination assays, some within-morph fertilizations set fruit. The end-season breakdown of synchronous flowering generates variability within morphs and populations. We suggest that this variability may potentially enable new mating combinations in a population and enhance its genetic diversity.


2005 ◽  
Vol 92 (11) ◽  
pp. 1871-1877 ◽  
Author(s):  
H. M. Hull-Sanders ◽  
M. D. Eubanks ◽  
D. E. Carr

2002 ◽  
Vol 80 (3) ◽  
pp. 187-195 ◽  
Author(s):  
STEWART T. SCHULTZ

Gynodioecy, a genetic dimorphism of females and hermaphrodites, is pertinent to an understanding of the evolution of plant gender, mating and genetic variability. Classical models of nuclear gynodioecy attribute the maintenance of the dimorphism to frequency-dependent selection in which the female phenotype has a fitness advantage at low frequency owing to a doubled ovule fertility. Here, I analyse explicit genetic models of nuclear gynodioecy that expand on previous work by allowing partial male sterility in combination with either fixed or dynamically evolving mutational inbreeding depression. These models demonstrate that partial male sterility causes fitness underdominance at the mating locus, which can prevent the spread of females. However, if partial male sterility is compensated by a change in selfing rate, overdominance at the mating locus can cause the spread of females. Overdominance at introduction of the male sterility allele can be caused by high inbreeding depression and a lower selfing rate in the heterozygote, by purging of mutations by a higher selfing rate in the heterozygote, and by low inbreeding depression and a higher selfing rate in the heterozygote. These processes might be of general importance in the maintenance of mating polymorphisms in plants.


2019 ◽  
Author(s):  
Himani Sachdeva

AbstractThis paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed.


Sign in / Sign up

Export Citation Format

Share Document