Carbon catabolite repression in Aspergillus nidulans: a review

1995 ◽  
Vol 73 (S1) ◽  
pp. 160-166 ◽  
Author(s):  
Claudio Scazzocchio ◽  
Victoria Gavrias ◽  
Beatriz Cubero ◽  
Cristina Panozzo ◽  
Martine Mathieu ◽  
...  

We describe the experimental methodology that led to the discovery of the creA gene in Aspergillus nidulans. This gene codes for a transcriptional repressor mediating carbon catabolite repression in many pathways in this organism. We compare both the mode and the mechanism of action in two pathways subject to CreA-mediated repression. The genes comprising the ethanol regulon are subject to carbon catabolite repression independently of the nitrogen source, while the genes involved in proline utilization are repressed by glucose only when a repressing nitrogen source is also present. In the ethanol regulon, CreA drastically represses the expression of the positive regulatory gene alcR, thus preventing the expression of the structural genes. Direct repression of the structural genes is also existant. In the proline utilization pathway, repression operates directly at the level of the structural genes. In the ethanol regulon, CreA prevents the self-induction of alcR and the induction of the structural genes by competing with the binding of the AlcR protein. In proline gene cluster, CreA does not interfere with induction mediated by PrnA but with the activity of an unknown and more general transcription factor. Key words: carbon catabolite repression, ascomycetes, Zn fingers.

1998 ◽  
Vol 180 (23) ◽  
pp. 6242-6251 ◽  
Author(s):  
Christopher J. Stemple ◽  
Meryl A. Davis ◽  
Michael J. Hynes

ABSTRACT Mutations in the facC gene of Aspergillus nidulans result in an inability to use acetate as a sole carbon source. This gene has been cloned by complementation. The proposed translation product of the facC gene has significant similarity to carnitine acetyltransferases (CAT) from other organisms. Total CAT activity was found to be inducible by acetate and fatty acids and repressed by glucose. Acetate-inducible activity was found to be absent in facC mutants, while fatty acid-inducible activity was absent in an acuJ mutant. Acetate induction offacC expression was dependent on the facBregulatory gene, and an expressed FacB fusion protein was demonstrated to bind to 5′ facC sequences. Carbon catabolite repression of facC expression was affected by mutations in thecreA gene and a CreA fusion protein bound to 5′facC sequences. Mutations in the acuJ gene led to increased acetate induction of facC expression and also of an amdS-lacZ reporter gene, and it is proposed that this results from accumulation of acetate, as well as increased expression of facB. A model is presented in which facCencodes a cytosolic CAT enzyme, while a different CAT enzyme, which isacuJ dependent, is present in peroxisomes and mitochondria, and these activities are required for the movement of acetyl groups between intracellular compartments.


1988 ◽  
Vol 8 (11) ◽  
pp. 4634-4641 ◽  
Author(s):  
A H Siddiqui ◽  
M C Brandriss

Deletion analysis of the promoter of the PUT2 gene that functions in the proline utilization pathway of Saccharomyces cerevisiae identified a PUT2 upstream activation site (UAS). It is contained within a single 40-base-pair (bp) region located immediately upstream of the TATA box and is both necessary and sufficient for proline induction. When placed upstream of a CYC7-lacZ gene fusion, the 40-bp sequence conferred proline regulation on CYC7-lacZ. A 35-bp deletion within the PUT2 UAS in an otherwise intact PUT2 promoter resulted in noninducible expression of a PUT2-lacZ gene fusion. When a plasmid bearing this UAS-deleted promoter was placed in a strain carrying a constitutive mutation in the positive regulatory gene PUT3, expression of PUT2-lacZ was not constitutive but occurred at levels below those found under noninducing conditions. In heterologous as well as homologous gene fusions, the PUT2 UAS appeared to be responsible for uninduced as well as proline-induced levels of expression. Although located immediately adjacent to the PUT2 UAS, the TATA box did not appear to play a regulatory role, as indicated by the results of experiments in which it was replaced by the CYC7 TATA box. A 26-bp sequence containing this TATA box was critical to the expression of PUT2, since a deletion of this region completely abolished transcriptional activity of the gene under both inducing and noninducing conditions. Our results indicate that the PUT2 promoter has a comparatively simple structure, requiring UAS and TATA sequences as well as the PUT3 gene product (directly or indirectly) for its expression.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Leandro José de Assis ◽  
Mevlut Ulas ◽  
Laure Nicolas Annick Ries ◽  
Nadia Ali Mohamed El Ramli ◽  
Ozlem Sarikaya-Bayram ◽  
...  

ABSTRACTThe attachment of one or more ubiquitin molecules by SCF (Skp–Cullin–F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungusAspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCEThe production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organismAspergillus nidulansin the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.


1988 ◽  
Vol 8 (8) ◽  
pp. 3532-3541
Author(s):  
A Andrianopoulos ◽  
M J Hynes

The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration).


1984 ◽  
Vol 4 (8) ◽  
pp. 1521-1527
Author(s):  
T E Torchia ◽  
R W Hamilton ◽  
C L Cano ◽  
J E Hopper

In Saccharomyces cerevisiae, the transcriptional expression of the galactose-melibiose catabolic pathway genes is under the control of at least three regulatory genes, GAL4, GAL80, and GAL3. We have isolated the GAL80 gene and have studied the effect of a null mutation on the carbon-controlled regulation of the MEL1 and GAL cluster genes. The null mutation was achieved in vivo by replacing the chromosomal wild-type GAL80 allele with an in vitro-created GAL80 deletion-disruption mutation. Enzyme activities and RNA levels for the GAL cluster and MEL1 genes were constitutively expressed in the null mutant strain grown on glycerol-lactate and were higher than in the isogenic wild-type yeast strain when compared after growth on galactose. Carbon catabolite repression of the GAL cluster and MEL1 genes, which occurs at the level of transcription, is retained in the null mutant. Deletion of the GAL80 gene in a gal4 cell does not restore GAL cluster and MEL1 gene expression. The data demonstrate that (i) the GAL80 protein is a purely negative regulator, (ii) the GAL80 protein does not mediate carbon catabolite repression, and (iii) the GAL4 protein is not simply an antagonizer of GAL80-mediated repression.


2000 ◽  
Vol 20 (3) ◽  
pp. 892-899 ◽  
Author(s):  
Hoching L. Huang ◽  
Marjorie C. Brandriss

ABSTRACT The proline utilization pathway in Saccharomyces cerevisiae is regulated by the Put3p transcriptional activator in response to the presence of the inducer proline and the quality of the nitrogen source in the growth medium. Put3p is constitutively bound to the promoters of its target genes, PUT1 andPUT2, under all conditions studied but activates transcription to the maximum extent only in the absence of rich nitrogen sources and in the presence of proline (i.e., when proline serves as the sole source of nitrogen). Changes in target gene expression therefore occur through changes in the activity of the DNA-bound regulator. In this report, we demonstrate by phosphatase treatment of immunoprecipitates of extracts metabolically labeled with32P or 35S that Put3p is a phosphoprotein. Examination of Put3p isolated from cells grown on a variety of nitrogen sources showed that it was differentially phosphorylated as a function of the quality of the nitrogen source: the poorer the nitrogen source, the slower the gel migration of the phosphoforms. The presence of the inducer does not detectably alter the phosphorylation profile. Activator-defective and activator-constitutive Put3p mutants have been analyzed. One activator-defective mutant appears to be phosphorylated in a pattern similar to that of the wild type, thus separating its ability to be phosphorylated from its ability to activate transcription. Three activator-constitutive mutant proteins from cells grown on an ammonia-containing medium have a phosphorylation profile similar to that of the wild-type protein in cells grown on proline. These results demonstrate a correlation between the phosphorylation status of Put3p and its ability to activate its target genes and suggest that there are two signals, proline induction and quality of nitrogen source, impinging on Put3p that act synergistically for maximum expression of the proline utilization pathway.


1988 ◽  
Vol 8 (8) ◽  
pp. 3532-3541 ◽  
Author(s):  
A Andrianopoulos ◽  
M J Hynes

The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration).


Sign in / Sign up

Export Citation Format

Share Document