Interaction of Grb2 SH3 domain with UVRAG in an Alzheimer’s disease–like scenario

2014 ◽  
Vol 92 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Kasturi Roy ◽  
Oishee Chakrabarti ◽  
Debashis Mukhopadhyay

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein which participates in trafficking pathways alongside its role in signaling. Proteins important for actin remodeling and cellular compartmentalization contain SRC Homology 3 (SH3) binding motifs that interact with Grb2. While studying the Grb2–amyloid precursor protein (APP) intracellular domain (AICD) interaction in Alzheimer’s disease cell line models, it was seen that Grb2 colocalized to compartments that mature into autophagosomes. The entrapping of AICD in the Grb2 vesicles and its clearance via autophagosomes was a survival contrivance on the part of the cell. Here, we report that Grb2, when in excess, interacts with ultraviolet radiation resistance-associated gene protein (UVRAG) under excess conditions of AICD–Grb2 or Grb2. The N-terminal SH3 domain of Grb2 specifically interacts with UVRAG, unlike the C-terminal SH3 domain. This interaction helps to understand the role of Grb2 in the autophagic maturation of vesicles.

Author(s):  
Sang-Eun Lee ◽  
Eunji Cho ◽  
Soomin Jeong ◽  
Yejij Song ◽  
Seokjo Kang ◽  
...  

Src homology 3-domain growth factor receptor-bound 2-like interacting protein 1 (SGIP1), originally known as a regulator of energy homeostasis, was later found to be an ortholog of Fer/Cip4 homology domain-only (FCHo) proteins and to function during endocytosis. SGIP1α is a longer splicing variant in mouse brains that contains additional regions in the membrane phospholipid-binding domain (MP) and C-terminal region, but functional consequences with or without additional regions between SGIP1 and SGIP1α remain elusive. Moreover, many previous studies have either inadvertently used SGIP1 instead of SGIP1α or used the different isoforms with or without additional regions indiscriminately, resulting in further confusion. Here, we report that the additional region in the MP is essential for SGIP1α to deform membrane into tubules and for homo-oligomerization, and SGIP1, which lacks this region, fails to perform these functions. Moreover, only SGIP1α rescued endocytic defects caused by FCHo knock-down. Thus, our results indicate that SGIP1α, but not SGIP1, is the functional ortholog of FCHos, and SGIP1 and SGIP1α are not functionally redundant. These findings suggest that caution should be taken in interpreting the role of SGIP1 in endocytosis.


2005 ◽  
Vol 388 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Leonard E. KELLY ◽  
A. Marie PHILLIPS

The stoned locus of Drosophila produces a dicistronic transcript and encodes two proteins, stoned-A (STNA) and stoned-B (STNB). Both proteins are located at synaptic terminals. The STNB protein contains a domain that has homology with the μ-subunit of the AP (adaptor protein) complex, as well as a number of NPF (Asp-Pro-Phe) motifs known to bind EH (Eps15 homology) domains. Mutations at the stoned locus interact synergistically with mutations at the shibire (dynamin) locus and alter synaptic vesicle endocytosis. The STNB protein has also been shown to interact with synaptic vesicles via synaptogamin-I. We initiated an investigation of the possible interaction of DAP-160 (dynamin-associated protein of 160 kDa), a Drosophila member of the intersectin family, with the STNB protein. We show here that both of the viable stoned alleles interacted with a genetic construct that reduces DAP-160 levels to 25% of normal. One of these stoned alleles contains a substitution resulting in a stop codon in the open reading frame encoding STNB. This allele also shows markedly reduced levels of both DAP-160 and dynamin. As anticipated, the NPF motifs in STNB are found to be high-affinity binding motifs for the EH domains of DAP-160. One of the SH3 (Src homology 3) domains of DAP-160 also interacts with STNB. Finally, we show that immunoprecipitation of STNB from fly head extracts co-precipitates with DAP-160, and we conclude that the interaction of the STNB protein with both synaptotagmin I and DAP-160 may regulate synaptic vesicle recycling by recruiting dynamin to a pre-fission complex.


2006 ◽  
Vol 172 (6) ◽  
pp. 817-822 ◽  
Author(s):  
Firdous A. Khanday ◽  
Lakshmi Santhanam ◽  
Kenji Kasuno ◽  
Tohru Yamamori ◽  
Asma Naqvi ◽  
...  

The Son of Sevenless 1 protein (sos1) is a guanine nucleotide exchange factor (GEF) for either the ras or rac1 GTPase. We show that p66shc, an adaptor protein that promotes oxidative stress, increases the rac1-specific GEF activity of sos1, resulting in rac1 activation. P66shc decreases sos1 bound to the growth factor receptor bound protein (grb2) and increases the formation of the sos1–eps8–e3b1 tricomplex. The NH2-terminal proline-rich collagen homology 2 (CH2) domain of p66shc associates with full-length grb2 in vitro via the COOH-terminal src homology 3 (C-SH3) domain of grb2. A proline-rich motif (PPLP) in the CH2 domain mediates this association. The CH2 domain competes with the proline-rich COOH-terminal region of sos1 for the C-SH3 domain of grb2. P66shc-induced dissociation of sos1 from grb2, formation of the sos1–eps8–e3b1 complex, rac1-specific GEF activity of sos1, rac1 activation, and oxidative stress are also mediated by the PPLP motif in the CH2 domain. This relationship between p66shc, grb2, and sos1 provides a novel mechanism for the activation of rac1.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
K Lerche ◽  
M Willem ◽  
K Kleinknecht ◽  
C Romberg ◽  
U Konietzko ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


Sign in / Sign up

Export Citation Format

Share Document