scholarly journals Sos-mediated activation of rac1 by p66shc

2006 ◽  
Vol 172 (6) ◽  
pp. 817-822 ◽  
Author(s):  
Firdous A. Khanday ◽  
Lakshmi Santhanam ◽  
Kenji Kasuno ◽  
Tohru Yamamori ◽  
Asma Naqvi ◽  
...  

The Son of Sevenless 1 protein (sos1) is a guanine nucleotide exchange factor (GEF) for either the ras or rac1 GTPase. We show that p66shc, an adaptor protein that promotes oxidative stress, increases the rac1-specific GEF activity of sos1, resulting in rac1 activation. P66shc decreases sos1 bound to the growth factor receptor bound protein (grb2) and increases the formation of the sos1–eps8–e3b1 tricomplex. The NH2-terminal proline-rich collagen homology 2 (CH2) domain of p66shc associates with full-length grb2 in vitro via the COOH-terminal src homology 3 (C-SH3) domain of grb2. A proline-rich motif (PPLP) in the CH2 domain mediates this association. The CH2 domain competes with the proline-rich COOH-terminal region of sos1 for the C-SH3 domain of grb2. P66shc-induced dissociation of sos1 from grb2, formation of the sos1–eps8–e3b1 complex, rac1-specific GEF activity of sos1, rac1 activation, and oxidative stress are also mediated by the PPLP motif in the CH2 domain. This relationship between p66shc, grb2, and sos1 provides a novel mechanism for the activation of rac1.

2014 ◽  
Vol 92 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Kasturi Roy ◽  
Oishee Chakrabarti ◽  
Debashis Mukhopadhyay

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein which participates in trafficking pathways alongside its role in signaling. Proteins important for actin remodeling and cellular compartmentalization contain SRC Homology 3 (SH3) binding motifs that interact with Grb2. While studying the Grb2–amyloid precursor protein (APP) intracellular domain (AICD) interaction in Alzheimer’s disease cell line models, it was seen that Grb2 colocalized to compartments that mature into autophagosomes. The entrapping of AICD in the Grb2 vesicles and its clearance via autophagosomes was a survival contrivance on the part of the cell. Here, we report that Grb2, when in excess, interacts with ultraviolet radiation resistance-associated gene protein (UVRAG) under excess conditions of AICD–Grb2 or Grb2. The N-terminal SH3 domain of Grb2 specifically interacts with UVRAG, unlike the C-terminal SH3 domain. This interaction helps to understand the role of Grb2 in the autophagic maturation of vesicles.


2002 ◽  
Vol 156 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Metello Innocenti ◽  
Pierluigi Tenca ◽  
Emanuela Frittoli ◽  
Mario Faretta ◽  
Arianna Tocchetti ◽  
...  

Signaling from receptor tyrosine kinases (RTKs)* requires the sequential activation of the small GTPases Ras and Rac. Son of sevenless (Sos-1), a bifunctional guanine nucleotide exchange factor (GEF), activates Ras in vivo and displays Rac-GEF activity in vitro, when engaged in a tricomplex with Eps8 and E3b1–Abi-1, a RTK substrate and an adaptor protein, respectively. A mechanistic understanding of how Sos-1 coordinates Ras and Rac activity is, however, still missing. Here, we demonstrate that (a) Sos-1, E3b1, and Eps8 assemble into a tricomplex in vivo under physiological conditions; (b) Grb2 and E3b1 bind through their SH3 domains to the same binding site on Sos-1, thus determining the formation of either a Sos-1–Grb2 (S/G) or a Sos-1–E3b1–Eps8 (S/E/E8) complex, endowed with Ras- and Rac-specific GEF activities, respectively; (c) the Sos-1–Grb2 complex is disrupted upon RTKs activation, whereas the S/E/E8 complex is not; and (d) in keeping with the previous result, the activation of Ras by growth factors is short-lived, whereas the activation of Rac is sustained. Thus, the involvement of Sos-1 at two distinct and differentially regulated steps of the signaling cascade allows for coordinated activation of Ras and Rac and different duration of their signaling within the cell.


2001 ◽  
Vol 152 (3) ◽  
pp. 471-482 ◽  
Author(s):  
Maiko Fukuoka ◽  
Shiro Suetsugu ◽  
Hiroaki Miki ◽  
Kiyoko Fukami ◽  
Takeshi Endo ◽  
...  

We identified a novel adaptor protein that contains a Src homology (SH)3 domain, SH3 binding proline-rich sequences, and a leucine zipper-like motif and termed this protein WASP interacting SH3 protein (WISH). WISH is expressed predominantly in neural tissues and testis. It bound Ash/Grb2 through its proline-rich regions and neural Wiskott-Aldrich syndrome protein (N-WASP) through its SH3 domain. WISH strongly enhanced N-WASP–induced Arp2/3 complex activation independent of Cdc42 in vitro, resulting in rapid actin polymerization. Furthermore, coexpression of WISH and N-WASP induced marked formation of microspikes in Cos7 cells, even in the absence of stimuli. An N-WASP mutant (H208D) that cannot bind Cdc42 still induced microspike formation when coexpressed with WISH. We also examined the contribution of WISH to a rapid actin polymerization induced by brain extract in vitro. Arp2/3 complex was essential for brain extract–induced rapid actin polymerization. Addition of WISH to extracts increased actin polymerization as Cdc42 did. However, WISH unexpectedly could activate actin polymerization even in N-WASP–depleted extracts. These findings suggest that WISH activates Arp2/3 complex through N-WASP–dependent and –independent pathways without Cdc42, resulting in the rapid actin polymerization required for microspike formation.


2009 ◽  
Vol 23 (6) ◽  
pp. 901-913 ◽  
Author(s):  
Siwei Li ◽  
Qian Wang ◽  
Yi Wang ◽  
Xinmei Chen ◽  
Zhixiang Wang

Abstract It is well established that epidermal growth factor (EGF) induces the cytoskeleton reorganization and cell migration through two major signaling cascades: phospholipase C-γ1 (PLC-γ1) and Rho GTPases. However, little is known about the cross talk between PLC-γ1 and Rho GTPases. Here we showed that PLC-γ1 forms a complex with Rac1 in response to EGF. This interaction is direct and mediated by PLC-γ1 Src homology 3 (SH3) domain and Rac1 106PNTP109 motif. This interaction is critical for EGF-induced Rac1 activation in vivo, and PLC-γ1 SH3 domain is actually a potent and specific Rac1 guanine nucleotide exchange factor in vitro. We have also demonstrated that the interaction between PLC-γ1 SH3 domain and Rac1 play a significant role in EGF-induced F-actin formation and cell migration. We conclude that PLC-γ1 and Rac1 coregulate EGF-induced cell cytoskeleton remodeling and cell migration by a direct functional interaction.


2006 ◽  
Vol 17 (1) ◽  
pp. 122-129 ◽  
Author(s):  
Firdous A. Khanday ◽  
Tohru Yamamori ◽  
Ilwola Mattagajasingh ◽  
Zhe Zhang ◽  
Artem Bugayenko ◽  
...  

The rac1 GTPase and the p66shc adaptor protein regulate intracellular levels of reactive oxygen species (ROS). We examined the relationship between rac1 and p66shc. Expression of constitutively active rac1 (rac1V12) increased phosphorylation, reduced ubiquitination, and increased stability of p66shc protein. Rac1V12-induced phosphorylation and up-regulation of p66shc was suppressed by inhibiting p38MAPK and was dependent on serine 54 and threonine 386 in p66shc. Phosphorylation of recombinant p66shc by p38MAPK in vitro was also partly dependent on serine 54 and threonine 386. Reconstitution of p66shc in p66shc-null fibroblasts increased intracellular ROS generated by rac1V12, which was significantly dependent on the integrity of residues 54 and 386. Overexpression of p66shc increased rac1V12-inducd apoptosis, an effect that was also partly dependent on serine 54 and threonine 386. Finally, RNA interference-mediated down-regulation of endogenous p66shc suppressed rac1V12-induced cell death. These findings identify p66shc as a mediator of rac1-induced oxidative stress. In addition, they suggest that serine 54 and threonine 386 are novel phosphorylatable residues in p66shc that govern rac1-induced increase in its expression, through a decrease in its ubiquitination and degradation, and thereby mediate rac1-stimulated cellular oxidative stress and death.


1994 ◽  
Vol 14 (3) ◽  
pp. 1575-1581
Author(s):  
G J Pronk ◽  
A M de Vries-Smits ◽  
L Buday ◽  
J Downward ◽  
J A Maassen ◽  
...  

Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.


2006 ◽  
Vol 26 (13) ◽  
pp. 4830-4842 ◽  
Author(s):  
Sonja G. Hunter ◽  
Guanglei Zhuang ◽  
Dana Brantley-Sieders ◽  
Wojciech Swat ◽  
Christopher W. Cowan ◽  
...  

ABSTRACT Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2−/− Vav3−/− mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kecheng Lei ◽  
Xiaoxia Gu ◽  
Alvaro G. Alvarado ◽  
Yuhong Du ◽  
Shilin Luo ◽  
...  

Abstract Background Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. Methods High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. Results We identified a small molecular inhibitor, “MNPC,” that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. Conclusions Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.


2008 ◽  
Vol 180 (6) ◽  
pp. 1205-1218 ◽  
Author(s):  
Ingrid Roxrud ◽  
Camilla Raiborg ◽  
Nina Marie Pedersen ◽  
Espen Stang ◽  
Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


Sign in / Sign up

Export Citation Format

Share Document