scholarly journals Epigenetic contributions to the developmental origins of adult lung disease

2015 ◽  
Vol 93 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Lisa A. Joss-Moore ◽  
Robert H. Lane ◽  
Kurt H. Albertine

Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.

Author(s):  
Thu N. A. Doan ◽  
Jessica F. Briffa ◽  
Aaron L. Phillips ◽  
Shalem Y. Leemaqz ◽  
Rachel A. Burton ◽  
...  

Abstract Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6–13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.


Obesity ◽  
2013 ◽  
Vol 22 (2) ◽  
pp. 608-615 ◽  
Author(s):  
Tessa L. Crume ◽  
Ann Scherzinger ◽  
Elizabeth Stamm ◽  
Robert McDuffie ◽  
Kimberly J. Bischoff ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Erich Cosmi ◽  
Tiziana Fanelli ◽  
Silvia Visentin ◽  
Daniele Trevisanuto ◽  
Vincenzo Zanardo

Intrauterine growth restriction is a condition fetus does not reach its growth potential and associated with perinatal mobility and mortality. Intrauterine growth restriction is caused by placental insufficiency, which determines cardiovascular abnormalities in the fetus. This condition, moreover, should prompt intensive antenatal surveillance of the fetus as well as follow-up of infants that had intrauterine growth restriction as short and long-term sequele should be considered.


2012 ◽  
Vol 71 (6) ◽  
pp. 689-696 ◽  
Author(s):  
Amy E. Sutherland ◽  
Kelly J. Crossley ◽  
Beth J. Allison ◽  
Graham Jenkin ◽  
Euan M. Wallace ◽  
...  

2017 ◽  
Vol 8 (5) ◽  
pp. 604-612 ◽  
Author(s):  
S. Perzel ◽  
H. Huebner ◽  
W. Rascher ◽  
C. Menendez-Castro ◽  
A. Hartner ◽  
...  

Intrauterine growth restriction (IUGR) and fetal growth restriction (FGR) are pregnancy complications associated with morbidity in later life. Despite a growing body of evidence from current research on developmental origins of health and disease (DOHaD), little information is currently provided to parents on long-term metabolic, cardiovascular and neurologic consequences. As parents strongly rely on internet-based health-related information, we examined the quality of information on IUGR/FGR sequelae and DOHaD in webpages used by laypersons. Simulating non-clinicians experience, we entered the terms ‘IUGR consequences’ and ‘FGR consequences’ into Google and Yahoo search engines. The quality of the top search-hits was analyzed with regard to the certification through the Health On the Net Foundation (HON), currentness of cited references, while reliability of information and DOHaD-related consequences were assessed via the DISCERN Plus score (DPS). Overall the citation status was not up-to-date and only a few websites were HON-certified. The results of our analysis showed a dichotomy between the growing body of evidence regarding IUGR/FGR-related sequelae and lack of current guidelines, leaving parents without clear directions. Furthermore, detailed information on the concept of DOHaD is not provided. These findings emphasize the responsibility of the individual physician for providing advice on IUGR/FGR-related sequelae, monitoring and follow-up.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3399
Author(s):  
Yasaman Shahkhalili ◽  
Florence Blancher-Budin ◽  
Cathriona Monnard ◽  
Julie Moulin ◽  
José Sanchez-Garcia ◽  
...  

The impact of early life protein source (whey vs. casein) on short- and long-term glucose homeostasis and adiposity is unknown and was investigated in this study. At the end of the suckling period, non-IUGR (intrauterine growth restriction) and IUGR pups were separated from dams and were randomized into four groups. From age 21–49 days, non-IUGR and IUGR pups were fed ad-libitum chow or a semi-synthetic diet (20% from protein; casein or whey) and from age 50–199 days, all groups were fed ad-libitum chow. Food intake, body composition, glucose, and insulin homeostasis were assessed. Among the chow groups, IUGR had slower growth and higher fasting glucose at age 42 days, as well as higher fasting and AUC glucose at age 192 days relative to non-IUGR. The whey IUGR group had a slower growth rate and higher fasting glycemia in early life (age 21–49 days) and higher HOMA-IR later in life (age 120–122 and 190–192 days) relative to casein IUGR. This study shows the potential advantage of casein relative to whey during weaning on short term energy intake, growth, and glucose homeostasis in an IUGR model and reveals, for the first time, its long term impact on insulin sensitivity, which may have implications for later metabolic health, particularly in small-for-gestational-age populations at risk of type 2 diabetes.


2001 ◽  
Vol 184 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Megan L. Cock ◽  
Cheryl A. Albuquerque ◽  
Belinda J. Joyce ◽  
Stuart B. Hooper ◽  
Richard Harding

Sign in / Sign up

Export Citation Format

Share Document