Analyses of groundwater flow and plant evapotranspiration in a vegetated soil slope

2013 ◽  
Vol 50 (12) ◽  
pp. 1204-1218 ◽  
Author(s):  
A.K. Leung ◽  
C.W.W. Ng

Understanding seasonal hydrogeological responses of vegetated soil slopes is vital to slope stability because pore-water pressure (PWP) varies from positive values upon rainfall in wet seasons to negative values upon plant evapotranspiration (ET) in dry seasons. There are, however, few case histories that report seasonal performance of vegetated soil slopes. In this study, a vegetated slope situated in Hong Kong was instrumented to analyse (i) groundwater flow during rainfall in the wet season and (ii) effects of plant ET on PWP in the dry season. Two- and three-dimensional anisotropic transient seepage analyses are conducted to identify groundwater flow mechanism(s) during a heavy rainstorm. Through water and energy balance calculations, measured plant-induced suction is interpreted with plant characteristic and climatic data. During the rainstorm, substantial recharge of the groundwater table was recorded, likely due to preferential water flow along relict joints and three-dimensional cross-slope groundwater flow. During the dry season, the peak suction induced by plant ET is up to 200 kPa and the depth of influence is shallower than 200% of the root depth. For the range of suctions monitored, root-water uptake is revealed to have been restricted by suction not very significantly and was driven mainly by the climatic variation.

2015 ◽  
Vol 52 (12) ◽  
pp. 1981-1992 ◽  
Author(s):  
C.W.W. Ng ◽  
H.W. Liu ◽  
S. Feng

Vegetation can reduce pore-water pressure in soil by root water uptake. The reduction of pore-water pressure results in higher shear strength, but lower soil water permeability, affecting slope stability and rainfall infiltration, respectively. Effects of different root architectures on root water uptake and hence pore-water pressure distributions are not well understood. In this study, new analytical solutions for calculating pore-water pressure in an infinite unsaturated vegetated slope are derived for different root architectures, namely, uniform, triangular, exponential, and parabolic root architectures. Using the newly developed solutions, four series of analytical parametric analyses are carried out to improve understanding of the factors affecting root water uptake and hence influencing pore-water pressure distributions. In the dry season, different root architectures can lead to large variations in pore-water pressure distributions. It is found that the exponential root architecture induces the highest negative pore-water pressure in the soil, followed by the triangular, uniform, and parabolic root architectures. The maximum negative pore-water pressure induced by the parabolic root architecture is about 77% of that induced by the exponential root architecture in the steady state. For a given root architecture, vegetation in completely decomposed granite (CDG, classified as silty sand) induces higher negative pore-water pressure than in either fine sand or silt. The zone influenced by vegetation can be about three to six times the root depth. In the wet season, after a 10 year return period rainfall with a duration of 24 h, different root architectures show similar pore-water pressure distributions.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Ground Water ◽  
2019 ◽  
Vol 58 (2) ◽  
pp. 278-290 ◽  
Author(s):  
Yun Zhang ◽  
Xuexin Yan ◽  
Tianliang Yang ◽  
Jichun Wu ◽  
Jianzhong Wu

2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


2003 ◽  
Vol 40 (5) ◽  
pp. 1012-1032 ◽  
Author(s):  
Illias Tsaparas ◽  
Harianto Rahardjo ◽  
David G Toll ◽  
Eng-Choon Leong

This paper presents the analysis of a 12 month long field study of the infiltration characteristics of two residual soil slopes in Singapore. The field measurements consist of rainfall data, runoff data of natural and simulated rainfall events, and pore-water pressure changes during infiltration at several depths and at several locations on the two slopes. The analysis of the field measurements identifies the total rainfall and the initial pore-water pressures within the two slopes as the controlling parameters for the changes in the pore-water pressures within the slopes during infiltration.Key words: infiltration, rainfall, runoff, pore-water pressure, field measurements.


2021 ◽  
Author(s):  
Timo Koch ◽  
Hanchuan Wu ◽  
Kent-André Mardal ◽  
Rainer Helmig ◽  
Martin Schneider

<p>1D-3D methods are used to describe root water and nutrient uptake in complex root networks. Root systems are described as networks of line segments embedded in a three-dimensional soil domain. Particularly for dry soils, local water pressure and nutrient concentration gradients can be become very large in the vicinity of roots. Commonly used discretization lengths (for example 1cm) in root-soil interaction models do not allow to capture these gradients accurately. We present a new numerical scheme for approximating root-soil interface fluxes. The scheme is formulated in the continuous PDE setting so that is it formally independent of the spatial discretization scheme (e.g. FVM, FD, FEM). The interface flux approximation is based on a reconstruction of interface quantities using local analytical solutions of the steady-rate Richards equation. The local mass exchange is numerically distributed in the vicinity of the root. The distribution results in a regularization of the soil pressure solution which is easier to approximate numerically. This technique allows for coarser grid resolutions while maintaining approximation accuracy. The new scheme is verified numerically against analytical solutions for simplified cases. We also explore limitations and possible errors in the flux approximation with numerical test cases. Finally, we present the results of a recently published benchmark case using this new method.</p>


2011 ◽  
Vol 255-260 ◽  
pp. 3488-3492
Author(s):  
Bao Lin Xiong ◽  
Jing Song Tang ◽  
Chun Jiao Lu

Rainfall is one of the main factors that influence the stability of slope. Rainfall infiltration will cause soil saturation changing and further influence pore water pressure and medium permeability coefficient. Based on porous media saturation-unsaturated flow theory, the slope transient seepage field is simulated under the conditions of rainfall infiltration. It is shown that change of pore water pressure in slope soil lag behind relative changes in rainfall conditions. As the rainfall infiltrate, unsaturated zone in top half of slope become diminution, the soil suction and shear strength reduce, so stabilization of soil slope is reduced.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chi Zhang ◽  
Qingyang Zhang ◽  
Zaitian Wu ◽  
Jisheng Zhang ◽  
Titi Sui ◽  
...  

Effects of the embedded monopile foundation on the local distributions of pore water pressure, soil stresses, and liquefaction are investigated in this study using a three-dimensional integrated numerical model. The model is based on a Reynolds-Averaged Navier-Stokes wave module and a fully dynamic poroelastic seabed module and has been validated with the analytical solution and experimental data. Results show that, compared to the situation without an embedded foundation, the embedded monopile foundation increases and decreases the maximum pore water pressure in the seabed around and below the foundation, respectively. The embedded monopile foundation also significantly modifies the distributions of the maximum effective soil stress around the foundation and causes a local concentration of soil stress below the two lower corners of foundation. A parametric study reveals that the effects of embedded monopile foundation on pore water pressure increase as the degrees of saturation and soil permeability decrease. The embedded monopile foundation tends to decrease the liquefaction depth around the structure, and this effect is relatively more obvious for greater degrees of saturation, greater soil permeabilities, and smaller wave heights.


Sign in / Sign up

Export Citation Format

Share Document