Evaluation of genetic diversity among some commercial cultivars and Iranian wild strains of Agaricus bisporus by microsatellite markers

Botany ◽  
2016 ◽  
Vol 94 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Nader Rokni ◽  
Ebrahim Mohammadi Goltapeh ◽  
Alireza Shafeinia ◽  
Naser Safaie

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in Iran. Lack of diversity in mushroom crops, especially where disease is concerned, creates a crucial risk for the currently grown cultivars. The aim of this study was to assess the genetic diversity among Iranian wild strains and some commercial cultivars by using microsatellite markers. Eighteen codominant microsatellite markers of A. bisporus (AbSSR) were used to distinguish 17 wild and commercial strains. All of the microsatellite markers used in this research gave clear banding patterns, and only one strain remained undistinguished. Among 106 generated alleles, the wild subgroup presented 53 alleles never found both in brown and white commercial cultivars, and 42 alleles never found in commercial brown strains. The dendrogram obtained by UPGMA clustering analysis separated A. bisporus strains into six groups. Based on our results, the high level of genetic diversity among Iranian wild strains, compared with the commercial strains, provides a new and promising source of diversity for A. bisporus breeding programs. To our knowledge this is the first relevant study of biodiversity in native Iranian populations of A. bisporus.

2017 ◽  
Vol 1 (01) ◽  
pp. 46-51
Author(s):  
OUMER SHERIFF ◽  
KEFYALEW ALEMAYEHU

Sheriff O, Alemayehu K. 2017. Review: Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs. Asian J Agric 1: 46-51. Microsatellites have been widely accepted and employed as useful molecular markers for measuring genetic diversity and divergence within and among populations. The various parameters developed so far to measure genetic diversity within and among populations are observed and expected heterozygosities (Ho and He), the mean number of alleles per locus (MNA),polymorphic information content (PIC), genetic distance and phylogenetic or tree building approach.The objective of thisreview was therefore to quantifythe genetic diversity studies of domestic sheep populations using microsatellite markersand their contribution in supporting sustainable sheep breeding programs. From the review, it is possible to see that there was high within population genetic variations in all the studied sheep populations, poor level of population differentiations and high levels of inbreeding. On the other hand, low estimates of hetrozygosities and mean number of alleles and employing only few and weak markers were observed in some of the studies. The gaps observed in the previous genetic diversity studies of the sheep populations may demand further works to reveal more information on the population structures andto start appropriate and sustainable breeding programs.


2013 ◽  
Vol 13 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Francisco Elias Ribeiro ◽  
Luc Baudouin ◽  
Patricia Lebrun ◽  
Lázaro José Chaves ◽  
Claudio Brondani ◽  
...  

The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the present study was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples were collected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles per locus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per population ranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populations of Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia do Forte. These results reveal a high level of genetic diversity in the Brazilian populations.


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 420-431 ◽  
Author(s):  
Gen-Lou Sun ◽  
Oscar Díaz ◽  
Björn Salomon ◽  
Roland von Bothmer

Genetic diversity of 33 Elymus caninus accessions was investigated using isozyme, RAPD, and microsatellite markers. The three assays differed in the amount of polymorphism detected. Microsatellites detected the highest polymorphism. Six microsatellite primer pairs generated a total of 74 polymorphic bands (alleles), with an average of 15.7 bands per primer pair. Three genetic similarity matrices were estimated based on band presence or absence. Genetic diversity trees (dendrograms) were derived from each marker technique, and compared using Mantel's test. The correlation coefficients were 0.204, 0.267, and 0.164 between isozyme and RAPD distance matrices, RAPD and microsatellite distance matrices, and between isozyme and microsatellite distance matrices, respectively. The three methodologies gave differing views of the amount of variation present but all showed a high level of genetic variation in E. caninus. The following points may be drawn from this study whether based on RAPD, microsatellite, or isozyme data: (i) The Icelandic populations are consistently revealed by the three dendrograms. The congruence of the discrimination of this accession group by RAPD, microsatellite, and isozyme markers suggests that geographic isolation strongly influenced the evolution of the populations; (ii) The degree of genetic variation within accessions was notably great; and (iii) The DNA-based markers will be the more useful ones in detecting genetic diversity in closely related accessions. In addition, a dendrogram, which took into account all fragments produced by isozymes, RAPDs, and microsatellites, reflected better the relationships than did dendrograms based on only one type of marker.Key words: Elymus caninus, genetic diversity, isozymes, RAPDs, microsatellites.


2002 ◽  
Vol 53 (6) ◽  
pp. 629 ◽  
Author(s):  
J. M. Musial ◽  
K. E. Basford ◽  
J. A. G. Irwin

Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 765-773 ◽  
Author(s):  
Ivandilson Pessoa Pinto de Menezes ◽  
Paulo Augusto Vianna Barroso ◽  
Lúcia Vieira Hoffmann ◽  
Valeska Silva Lucena ◽  
Marc Giband

Mocó cotton ( Gossypium hirsutum  L. race marie-galante (Watt) Hutch.) is a potential source of valuable alleles for breeding programs, mainly because of its great adaptability to semi-arid conditions. With the aim of quantifying mocó cotton genetic variability, 187 plants collected in the northeast of Brazil were evaluated using 12 microsatellite markers. A total of 62 alleles were amplified, ranging from three to eight polymorphic alleles per locus. Total genetic diversity was high (0.52), and when measured on a per state basis, was of 0.37 on average. The population showed a low level of heterozygozity (HO = 0.16), reflecting a high level of endogamy (FIS = 0.67). Phylogenetic analysis using the neighbor-joining method revealed that plants sampled in different states tended to cluster according to their geographic origin, except for those collected in the states of Paraíba and Rio Grande do Norte, which grouped together. Plants from the state of Piauí formed two groups, one with an apparent allelic contribution from G. barbadense, while the second group of plants was closer to those from the states of Paraíba and Rio Grande do Norte. Despite the high genetic diversity that was observed in the remaining populations, urgent conservation efforts should be undertaken, owing to the high level of endogamy and accelerated extinction process that characterizes these populations. Such efforts should focus on the collection and ex situ maintenance of representative genetic diversity.


2015 ◽  
Vol 5 (3) ◽  
pp. 728-731
Author(s):  
Ziyad A. Abed

 A field experiments was conducted in greenhouse to determinate the genetic diversity among 7 genotypes from maize(4 inbreds and 3hybrids) by using molecular markers with Random Amplified polymorphic DNA(RAPD),that shown high level of polymorphism among genotypes of maize ,where the percentage of polymorphism ranged from(66%) and (83.33%) the highest number of polymorphism band (16) and size fragment ranged between (3800 bp) with the primer ( Bnlg 1185 ) and the lowest 180 with the primer( Bnlg 1464).The genetic distance value ranged between (0.3451) and (0.6534) ,where the lowest genic distance between (k1 and k2),while the highest genetic distance between(k4) and (k3xk4).In this study RAPD markers were shown to be powerful to detect genetic diversity and provided us high polymorphism values within genotypes of maize ,also we can conclude for useful those primers for genetic studies in plant breeding programs for developing synthetic cultivars or improved inbreds of maize. 


2021 ◽  
Author(s):  
Agaba B. Bosco ◽  
Karen Anderson ◽  
Karryn Gresty ◽  
Christiane Prosser ◽  
David Smith ◽  
...  

Abstract Background: Genetic diversity and parasite relatedness are essential parameters for assessing impact of interventions and understanding transmission dynamics of malaria parasites however data on its status in P. falciparum populations in Uganda is limited. We used microsatellite markers and DNA sequencing to determine diversity and molecular characterization of P. falciparum parasite populations in Uganda. Methods: A total of 147 P. falciparum genomic DNA samples collected from cross-sectional surveys in symptomatic individuals 2-10 years were characterized by genotyping of seven highly polymorphic neutral microsatellite markers (n=85) and genetic sequencing of the Histidine Rich Protein 2 (pfhrp2) gene (n=62). ArcGIS was used to map the geographical distribution of isolates while statistical testing was done using Student's t-test or Wilcoxon's rank-sum test and Fisher’s exact test as appropriate at P ≤ 0.05. Results: Overall, 75.5% (95% CI: 61.1 - 85.8) and 24.5 % (95% CI:14.2 - 38.9) of parasites examined were of multiclonal (mixed genotype) and single clone infections respectively. Multiclonal infections occurred more frequently in the Eastern region 73.7% (95% CI: 48.8 - 89.1), P<0.05. Overall, multiplicity of infection (MOI) was 1.9 (95% CI: 1.7 - 2.1), P=0.01 that was similar between age groups (1.8 vs 1.9), P=0.60 and regions (1.9 vs 1.8), P=0.43 for the <5 and ≥5 years and Eastern and Western regions respectively. Genomic sequencing of the pfhrp2 exon2 revealed a high level of genetic diversity reflected in 96.8% (60/62) unique sequence types. Repeat type AHHAAAHHATD and HRP2 sequence Type C were more frequent in RDT-/PCR+ samples (1.9% vs 1.5%) and (13% vs 8%), P<0.05 respectively. Genetic relatedness analysis revealed small clusters of gene deleted parasites in Uganda, but no clustering with Eritrean parasites. Conclusion: We observed a high level of genetic diversity of P. falciparum parasites reflected in the frequency of multiclonal infections, multiplicity of infection and variability of the pfhrp2 gene in these samples. These findings are consistent with the high malaria transmission intensity and endemicity in these settings despite the scaling up of malaria interventions. Findings highlight the need for selection of appropriate molecular tools for detection of drug resistance and pfhrp2 gene deletions in multiclonal infections. Genetic analysis suggested spontaneous emergence and clonal expansion of pfhrp2 deleted parasites that require close monitoring to inform national malaria diagnosis and case management policies. We recommend future molecular epidemiological surveys on parasite genomics that are more representative with wider coverage.


Sign in / Sign up

Export Citation Format

Share Document