scholarly journals Genetic diversity and genetic relatedness in P. falciparum parasite population in individuals with uncomplicated malaria based on Microsatellite typing in Eastern and Western regions of Uganda, 2019-2020.

Author(s):  
Agaba B. Bosco ◽  
Karen Anderson ◽  
Karryn Gresty ◽  
Christiane Prosser ◽  
David Smith ◽  
...  

Abstract Background: Genetic diversity and parasite relatedness are essential parameters for assessing impact of interventions and understanding transmission dynamics of malaria parasites however data on its status in P. falciparum populations in Uganda is limited. We used microsatellite markers and DNA sequencing to determine diversity and molecular characterization of P. falciparum parasite populations in Uganda. Methods: A total of 147 P. falciparum genomic DNA samples collected from cross-sectional surveys in symptomatic individuals 2-10 years were characterized by genotyping of seven highly polymorphic neutral microsatellite markers (n=85) and genetic sequencing of the Histidine Rich Protein 2 (pfhrp2) gene (n=62). ArcGIS was used to map the geographical distribution of isolates while statistical testing was done using Student's t-test or Wilcoxon's rank-sum test and Fisher’s exact test as appropriate at P ≤ 0.05. Results: Overall, 75.5% (95% CI: 61.1 - 85.8) and 24.5 % (95% CI:14.2 - 38.9) of parasites examined were of multiclonal (mixed genotype) and single clone infections respectively. Multiclonal infections occurred more frequently in the Eastern region 73.7% (95% CI: 48.8 - 89.1), P<0.05. Overall, multiplicity of infection (MOI) was 1.9 (95% CI: 1.7 - 2.1), P=0.01 that was similar between age groups (1.8 vs 1.9), P=0.60 and regions (1.9 vs 1.8), P=0.43 for the <5 and ≥5 years and Eastern and Western regions respectively. Genomic sequencing of the pfhrp2 exon2 revealed a high level of genetic diversity reflected in 96.8% (60/62) unique sequence types. Repeat type AHHAAAHHATD and HRP2 sequence Type C were more frequent in RDT-/PCR+ samples (1.9% vs 1.5%) and (13% vs 8%), P<0.05 respectively. Genetic relatedness analysis revealed small clusters of gene deleted parasites in Uganda, but no clustering with Eritrean parasites. Conclusion: We observed a high level of genetic diversity of P. falciparum parasites reflected in the frequency of multiclonal infections, multiplicity of infection and variability of the pfhrp2 gene in these samples. These findings are consistent with the high malaria transmission intensity and endemicity in these settings despite the scaling up of malaria interventions. Findings highlight the need for selection of appropriate molecular tools for detection of drug resistance and pfhrp2 gene deletions in multiclonal infections. Genetic analysis suggested spontaneous emergence and clonal expansion of pfhrp2 deleted parasites that require close monitoring to inform national malaria diagnosis and case management policies. We recommend future molecular epidemiological surveys on parasite genomics that are more representative with wider coverage.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Agaba B. Bosco ◽  
Karen Anderson ◽  
Karryn Gresty ◽  
Christiane Prosser ◽  
David Smith ◽  
...  

Abstract Background Genetic diversity and parasite relatedness are essential parameters for assessing impact of interventions and understanding transmission dynamics of malaria parasites, however data on its status in Plasmodium falciparum populations in Uganda is limited. Microsatellite markers and DNA sequencing were used to determine diversity and molecular characterization of P. falciparum parasite populations in Uganda. Methods A total of 147 P. falciparum genomic DNA samples collected from cross-sectional surveys in symptomatic individuals of 2–10 years were characterized by genotyping of seven highly polymorphic neutral microsatellite markers (n = 85) and genetic sequencing of the Histidine Rich Protein 2 (pfhrp2) gene (n = 62). ArcGIS was used to map the geographical distribution of isolates while statistical testing was done using Student's t-test or Wilcoxon's rank-sum test and Fisher’s exact test as appropriate at P ≤ 0.05. Results Overall, 75.5% (95% CI 61.1–85.8) and 24.5% (95% CI14.2–38.9) of parasites examined were of multiclonal (mixed genotype) and single clone infections, respectively. Multiclonal infections occurred more frequently in the Eastern region 73.7% (95% CI 48.8–89.1), P < 0.05. Overall, multiplicity of infection (MOI) was 1.9 (95% CI 1.7–2.1), P = 0.01 that was similar between age groups (1.8 vs 1.9), P = 0.60 and regions (1.9 vs 1.8), P = 0.43 for the < 5 and ≥ 5 years and Eastern and Western regions, respectively. Genomic sequencing of the pfhrp2 exon2 revealed a high level of genetic diversity reflected in 96.8% (60/62) unique sequence types. Repeat type AHHAAAHHATD and HRP2 sequence Type C were more frequent in RDT−/PCR + samples (1.9% vs 1.5%) and (13% vs 8%), P < 0.05 respectively. Genetic relatedness analysis revealed small clusters of gene deleted parasites in Uganda, but no clustering with Eritrean parasites. Conclusion High level of genetic diversity of P. falciparum parasites reflected in the frequency of multiclonal infections, multiplicity of infection and variability of the pfhrp2 gene observed in this study is consistent with the high malaria transmission intensity in these settings. Parasite genetic analysis suggested spontaneous emergence and clonal expansion of pfhrp2 deleted parasites that require close monitoring to inform national malaria diagnosis and case management policies.


2013 ◽  
Vol 13 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Francisco Elias Ribeiro ◽  
Luc Baudouin ◽  
Patricia Lebrun ◽  
Lázaro José Chaves ◽  
Claudio Brondani ◽  
...  

The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the present study was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples were collected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles per locus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per population ranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populations of Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia do Forte. These results reveal a high level of genetic diversity in the Brazilian populations.


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 420-431 ◽  
Author(s):  
Gen-Lou Sun ◽  
Oscar Díaz ◽  
Björn Salomon ◽  
Roland von Bothmer

Genetic diversity of 33 Elymus caninus accessions was investigated using isozyme, RAPD, and microsatellite markers. The three assays differed in the amount of polymorphism detected. Microsatellites detected the highest polymorphism. Six microsatellite primer pairs generated a total of 74 polymorphic bands (alleles), with an average of 15.7 bands per primer pair. Three genetic similarity matrices were estimated based on band presence or absence. Genetic diversity trees (dendrograms) were derived from each marker technique, and compared using Mantel's test. The correlation coefficients were 0.204, 0.267, and 0.164 between isozyme and RAPD distance matrices, RAPD and microsatellite distance matrices, and between isozyme and microsatellite distance matrices, respectively. The three methodologies gave differing views of the amount of variation present but all showed a high level of genetic variation in E. caninus. The following points may be drawn from this study whether based on RAPD, microsatellite, or isozyme data: (i) The Icelandic populations are consistently revealed by the three dendrograms. The congruence of the discrimination of this accession group by RAPD, microsatellite, and isozyme markers suggests that geographic isolation strongly influenced the evolution of the populations; (ii) The degree of genetic variation within accessions was notably great; and (iii) The DNA-based markers will be the more useful ones in detecting genetic diversity in closely related accessions. In addition, a dendrogram, which took into account all fragments produced by isozymes, RAPDs, and microsatellites, reflected better the relationships than did dendrograms based on only one type of marker.Key words: Elymus caninus, genetic diversity, isozymes, RAPDs, microsatellites.


Botany ◽  
2016 ◽  
Vol 94 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Nader Rokni ◽  
Ebrahim Mohammadi Goltapeh ◽  
Alireza Shafeinia ◽  
Naser Safaie

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in Iran. Lack of diversity in mushroom crops, especially where disease is concerned, creates a crucial risk for the currently grown cultivars. The aim of this study was to assess the genetic diversity among Iranian wild strains and some commercial cultivars by using microsatellite markers. Eighteen codominant microsatellite markers of A. bisporus (AbSSR) were used to distinguish 17 wild and commercial strains. All of the microsatellite markers used in this research gave clear banding patterns, and only one strain remained undistinguished. Among 106 generated alleles, the wild subgroup presented 53 alleles never found both in brown and white commercial cultivars, and 42 alleles never found in commercial brown strains. The dendrogram obtained by UPGMA clustering analysis separated A. bisporus strains into six groups. Based on our results, the high level of genetic diversity among Iranian wild strains, compared with the commercial strains, provides a new and promising source of diversity for A. bisporus breeding programs. To our knowledge this is the first relevant study of biodiversity in native Iranian populations of A. bisporus.


2014 ◽  
Vol 8 (1) ◽  
pp. 46-54
Author(s):  
Batool Omran Theeb ◽  
Abdulkareem Jasim Hashim ◽  
Akeel Hussain Ali Al-Assi

This study is an attempt to determine the genetic diversity and relationships among fourteen local isolate isolated from patients with Aspergillosis (Aspergillus fumigatus) by using the Random Amplified Polymorphic DNA (RAPD) technique. Twelve universal primers used in this study produced 94 bands across fourteen isolates. Of these bands, 67 bands or 71.2% were polymorphic. The size of the amplified bands ranged between 100-2000 bp. The genetic polymorphism value of each primer was determined and ranged between 33-100%. In terms of unique banding patterns, determine the finger print for six isolates the most characteristic banding pattern was for the (AFU1, AFU2, AFU3, AFU4, AFU8 and AFU14) with primer (OP F-16 , OP I-06, OP F-16, OP X-01, OP X-01and OP A-06). Genetic distances ranged from 0.12419 to 0.64404 among A. fumigatus isolates. Cluster analyses were performed to construct a dendrogram among studied A. fumigatus isolates. The cluster analysis places most of the A.fumigatus isolates isolated from patient come from yhe same area into a close relation (subcluster) showing a high level of genetic relatedness and were distinct from isolates from another area (the other subcluster). Interestingly, a number of isolates originating from the same sources did form well defined groups, indicating association between the RAPD patterns and the geographic origin of the isolates. The information generated from this study can be used in the future for controlling of Aspergillosis programs.


2009 ◽  
Vol 7 (03) ◽  
pp. 281-290
Author(s):  
Kirsten Wolff ◽  
Sabina Knees ◽  
Suzanne Cubey

DNA fingerprinting using microsatellites is a useful aid in cultivar identification, but has rarely been applied to garden plants. Eleven microsatellite markers were developed for the valuable garden plantHesperanthacoccinea(Schizostylis coccinea), and used to determine relatedness of accessions. Several accessions, described as separate cultivars, appeared to have identical genotypes. Among the 53 accessions tested, there were 34 unique multilocus genotypes. The level of polymorphism detected in the cultivars was high, with on average seven alleles per locus and an average expected heterozygosity of 0.72 across loci. It is clear from the genotypes that a large proportion of the cultivars are closely related to each other. The resulting markers can now be used to generate a complete database of all known cultivars of the species and to detect essentially derived cultivars. As an extension of this study, the markers identified here could also inform us about the genetic diversity in wild populations.


2016 ◽  
Vol 1 (3) ◽  
pp. 115
Author(s):  
Shadia A. Salih ◽  
Labuschange T. Labuschange ◽  
Abdalla H. Mohammed

The study of genetic diversity in crops has a strong impact on plant breeding and maintenance of genetic resources. Comprehensive knowledge of the genetic biodiversity of cultivated and wild sorghum germplasm is an important prerequisite for sustainability of sorghum production. Recurrent droughts resulting from climate change scenarios’ in many East and Central Africa countries, where sorghum is a significant arable crop, can potentially lead to genetic erosion and loss of valuable genetic resources. This study aimed at assessing the extent and pattern of genetic diversity and population genetic structure among sorghum accessions from selected countries in East and Central Africa (Sudan, Kenya, Uganda, Ethiopia, Eritrea, Rwanda and Burundi) using39 microsatellites markers. The studied loci were polymorphic and revealed a total of 941 alleles in 1108 sorghum genotypes. High levels of diversity were revealed with Sudan (68.5) having the highest level of genetic diversity followed by Ethiopia (65.3), whereas Burundi (0.45) and Rwanda (0.33) had the lowest level of genetic diversity. Analysis of molecular variance indicated, all variance components to be highly significant (p<0.001). The bulk of the variation was partitioned within countries (68.1%) compared to among countries (31.9%). Genetic differentiation between countries based on FST values was high and highly significant (FST=0.32). Neighbour-joining (NJ) analysis formed two distinct clusters according to geographic regions, namely the central region (Kenya, Burundi, Uganda and Rwanda) and the eastern region (Sudan, Ethiopia, and Eritrea). Population structure analysis revealed six distinct populations corresponding to NJ analysis and geographical origin of accessions. Countries clustered independently with small integration, which indicated the role of farmers’ practices in the maintenance of landrace identity and genetic diversity. The observed high level of genetic diversity indicated that germplasm from East Africa should be preserved from genetic erosion, especially in countries with the highest diversity.


Genetika ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 147-155
Author(s):  
Darestani Yousefi ◽  
Ashtiani Miraei ◽  
Mostafa Sadeghi

Indigenous buffalo breeds represent a unique genetic resource, and understanding their variability, population structure and breeding units is important for their sustainable conservation. In the present study the genetic structure of Iranian buffalo populations was analyzed using ten microsatellite markers. Two hundred hair samples were collected and DNA was extracted using modified salting out method. After Polymerase Chain Reaction (PCR), the PCR products were electrophoresed using 9% polyacrylamide gel. Fifty- nine alleles were observed for all the loci. The average number of alleles was 5.90 and the effective average number of alleles was 4.86. The high level of mean heterozygosity index between three populations indicate that the genetic diversity is high in within and between populations. The mean of polymorphism information content (PIC) value for all loci was 0.70. The FST value for the total loci was 0.01, indicating a very low level of genetic structure among populations. The genetic structure AMOVA analysis showed that about 3% of the total genetic variation was explained by population differences and 97 percent was corresponded to differences among individuals. The obtained results at the present study indicated that characterization of genetic diversity by employing molecular tools is a prerequisite in developing strategies for conservation and utilization of buffalo genetic resources.


2018 ◽  
Vol 64 (4) ◽  
pp. 173-182
Author(s):  
Hamed Al-Nadabi ◽  
Mumtaz Khan ◽  
Rashid Abdullah Al-Yahyai ◽  
Abdullah Mohammed Al-Sadi

Abstract A study was conducted to evaluate genetic relatedness of 27 citrus cultivars and 6 wild citrus accessions using AFLP fingerprinting. The 27 citrus cultivars belonged to Citrus sinensis, C. aurantifolia, C. aurantium, C. paradise, C. reticulata, C. limon, C. latifolia, C. maxima, C. limettoides, C. limetta, C. medica and C. Jambhiri. The wild cultivars were obtained from Oman while the other cultivars originated from Oman and other countries. AFLP analysis using 4 primer pair combinations resolved 910 polymorphic alleles. All citrus cultivars and accessions had low genetic diversity (H = 0.0281 to 0.1300), with the percent polymorphic loci ranging from 8 to 35%. Populations of the six wild citrus accessions showed a very low level of genetic diversity (< 0.0700). Cluster analysis of the 33 cultivars and accessions showed that they share a high level of genetic similarity (81‒99%; mean = 92%). The six wild accessions clustered into two main clusters, with the analysis indicating that the six wild accessions may make up six distinct cultivars. The study provides information on the phylogeny of citrus cultivars and citrus diversity in Oman, a country through which citrus moved in the past from Asia to different African and European countries. In addition, it shows that some distinct citrus cultivars are present in this part of the world.


Genetika ◽  
2014 ◽  
Vol 46 (3) ◽  
pp. 1047-1063
Author(s):  
Ankica Kondic-Spika ◽  
Milica Nicic ◽  
Ljiljana Brbaklic ◽  
Dragana Trkulja ◽  
Dragana Miladinovic ◽  
...  

Microsatellite markers (SSR) were used to study wheat genetic diversity. A set of 87 wheat genotypes was analysed with four SSR markers. Primers used for the amplification of adequate microsatellite loci (Xgwm) are according to R?DER et al. (2002). Results were obtained using Applied Biosystems 3130 genetic analyser. Total of 28 alleles were determined, i.e. average of 7 alleles per marker. Number of alleles for individual markers ranged from six (Xgwm3) to eight (Xgwm18). The presence of two null alleles for Xgwm18 and Xgwm155 was found. There were five rare alleles (frequency <2%). Polymorphism information content (PIC) values ranged from 0.52 for Xgwm408 to 0.80 for Xgwm18. Mean PIC value was 0.69 for all markers, which signifies a high level of the detected polymorphism. According to the data collected through the analysis of four markers, most genotypes can be grouped in clusters. The results show usefulness of microsatellite markers in detecting polymorphism, identifying genotypes and assessing genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document