scholarly journals Trichomycete prevalence in Thomas Brook, Nova Scotia, exposed to different levels of human activity

Botany ◽  
2021 ◽  
pp. 671-682
Author(s):  
D.B. Strongman

The Thomas Brook in the Annapolis Valley, Nova Scotia, was the focus of an Agriculture and Agri-Food Canada wastershed evaluation of beneficial management practices (WEBs) project from 2004–2008. The stream is impacted by human activities along its course, with residential influences and farming operations. The water quality in Thomas Brook was assessed in 2006, and the current study done in 2011–2012 used the same standard invertebrate metrics to measure water quality. This project also examined the prevalence of gut endosymbionts (trichomycetes) in aquatic invertebrates to determine whether water quality affects this community of obligate microorganisms in their hosts. The water quality was improved in Thomas Brook in 2011/2012 compared with that measured in the earlier study. There were 34 taxa of trichomycetes recorded in benthic insects in the stream, including two new species. The trichomycete community was rich in dipteran hosts (midges and black fly larvae), but the prevalence of gut fungi in ephemeropteran (mayfly) nymphs in the system was low, perhaps due to the impact of human activities on water quality.

2020 ◽  
Vol 20 (2) ◽  
pp. 688-699 ◽  
Author(s):  
Yongrong Zhang ◽  
Zhongfa Zhou ◽  
Haotian Zhang ◽  
Yusheng Dan

Abstract In water pollution source research, it is difficult to quantify the impact of human activities on water quality. Based on pollution load theory and the concept of spatialization of social data, this study integrates land-use type, slope gradient, and spatial position, and uses the contribution of human activities to quantify the impact of farmland fertilizers, livestock and poultry wastes, and human domestic pollution on water quality in the study area. The results show that livestock manure is the largest source of total phosphorus (TP) and total nitrogen (TN) discharges in the research area, and domestic pollution is the largest source of chemical oxygen demand (COD) discharges. The total equal standard pollution load (as well as the load of each pollution source and its pollutant amount) is the highest in the Nayong River Basin and the lowest in the Baishui River Basin. The contributions of human activities to TP and TN have similar spatial distributions. The impact of human activities on COD discharge is minimal. The quantitative results of this model are basically consistent with the actual conditions in the Pingzhai Reservoir Basin, which suggests that the model reasonably reflects the impact of human activities on the water environment of the basin.


2021 ◽  
Vol 61 (7) ◽  
pp. 637
Author(s):  
Louise Edwards ◽  
Helen Crabb

Context Water is the first nutrient and an essential component of all agricultural production systems. Despite its importance there has been limited research on water, and in particular, the impact of its availability, management and quality on production systems. Aims This research sought to describe the management and quality of water used within the Australian pig industry. Specifically, the water sources utilised, how water was managed and to evaluate water quality at both the source and the point of delivery to the pig. Methods Fifty-seven commercial piggeries across Australia participated in this study by completing a written survey on water management. In addition, survey participants undertook physical farm parameter measurements including collecting water samples. Each water sample was tested for standard quality parameters including pH, hardness, heavy metals and microbiological status. Key results Responses were received from 57 farms, estimated to represent at least 22% of ‘large’ pig herds. Bore water was the most common water source being utilised within the farms surveyed. Management practices and infrastructure delivering water from the source to the point of consumption were found to differ across the farms surveyed. Furthermore, water was regularly used as a delivery mechanism for soluble additives such as antibiotics. The quality of water at the source and point of consumption was found to be highly variable with many parameters, particularly pH, hardness, salinity, iron, manganese and microbiological levels, exceeding the acceptable standard. Conclusions In general, water quality did not appear to be routinely monitored or managed. As a result, farm managers had poor visibility of the potential negative impacts that inferior water quality or management may be having on pig production and in turn the economics of their business. Indeed, inferior water quality may impact the delivery of antibiotics and in turn undermine the industry’s antimicrobial stewardship efforts. Implications The study findings suggest that water quality represents a significant challenge to the Australian pig industry. Access to drinking water of an acceptable quality is essential for optimal pig performance, health and welfare but also to ensure farm to fork supply chain integrity, traceability and food safety.


2011 ◽  
Vol 15 ◽  
pp. 3-6
Author(s):  
R. Brazendale ◽  
J.R. Bryant ◽  
M.G. Lambert ◽  
C.W. Holmes ◽  
T.J. Fraser

The farm system model, Farmax Dairy Pro, was used to evaluate the impact of new pastures on dairy farm profitability, assuming a range of pasture yields and qualities, and different levels of persistence in the new pastures, which were established on 10% of the farm annually. Scenarios were tested for Waikato, Taranaki, Canterbury and Southland dairy farm systems. Assuming a $6.50/kg MS milk payment and a response to pasture renewal of 10% in dry matter yield and a 0.6 MJ ME/kg DM increase in quality, increasing persistence from 4 years up to 8 years was modelled to increase dairy farm profitability by $271/ha to $478/ha. Management practices, including selections of cultivars and endophytes, that improve pasture persistence are likely to increase dairy farm profitability. Keywords: dairy farms, modelling, pasture renewal, persistence


EDIS ◽  
1969 ◽  
Vol 2004 (2) ◽  
Author(s):  
Craig D. Stanley ◽  
Brent K. Harbaugh

There is no more essential component for the poinsettia production system than water, yet it is often less intensively managed than other production inputs. Perhaps the tendency to overlook the importance of water occurs because its use is linked so closely to other components of production which are intensively managed. Water management is a critical consideration for many aspects of production such as fertility control, media selection, and disease and insect control. In addition, because water conservation and protection have become important issues to society as a whole, poinsettia producers must consider management practices which minimize the impact that production has on the environment and water resources. This paper will discuss the uses of water in poinsettia production, the advantages and disadvantages of the use of different irrigationsystems (management, maintenance, water conservation, and economics) available for poinsettia production, irrigation water requirements and scheduling, and plant and environmental water quality concerns. This is document SL-212, a publication of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL. Published January 2004.


2020 ◽  
Author(s):  
Andrew Nicholas Kadykalo ◽  
Kris Johnson ◽  
Scott McFatridge ◽  
C. Scott Findlay

Although agricultural “best (or beneficial) management practices” (BMPs) first emerged to mitigate agro-environmental resource challenges, they may also enhance ‘non-provisioning’ ecosystem services. The enthusiasm for adopting BMPs partially depends on evidence that doing so will lead to agro-environmental benefits while not substantially reducing crop productivity or farmer income. We survey and synthesize evidence in the existing literature to document the joint effects on agricultural crop yield and 12 ecosystem service (ES) associated with implementation of 5 agricultural BMPs (crop rotations, cover crops, nutrient management, perennial vegetated buffers, reduced or no tillage). We also analyze the prevalence of co-benefits (‘win-win’), tradeoffs, and co-costs (‘lose-lose’) outcomes. On the basis of a set of contextual variables we then develop empirical models that predict the likelihood of co-benefits relative to tradeoffs, and co-costs. We found thirty-six studies investigating 141 combinations of crop yields and non-provisioning ES outcomes (YESs) in the relevant literatures covering the period 1983-2016. The scope of the review is global, but included studies are geographically concentrated in the U.S. Corn Belt (Midwestern United States). In the literature sample, reporting of co-benefits (26%) was much more prevalent than reporting of co-costs (4%) between yields and ES. Tradeoffs most often resulted in a reduction in crop yields and an increase in ES (28%); this was marginally greater than studies reporting a neutral influence on crop yields and an increase in ES (26%). Other Y/ES combinations were uncommon. Mixed-effects models indicated reduced tillage and crop rotations had generally positive associations with YESs. Temporal scale was an informative predictor suggesting studies with longer time scales resulted in greater positive outcomes on YESs, on average. Our results are a step towards identifying those contexts where co-benefits or partial improvement outcomes of BMPs are more likely to be realized, as well as the impact of particular practices on specific ES.


Sign in / Sign up

Export Citation Format

Share Document