Effects of column stiffness irregularity on the seismic response of bridges in the longitudinal direction

2013 ◽  
Vol 40 (8) ◽  
pp. 815-825 ◽  
Author(s):  
Payam Tehrani ◽  
Denis Mitchell

The longitudinal seismic responses of 4-span continuous bridges designed based on the 2006 Canadian Highway Bridge Design Code were studied using elastic response spectrum and inelastic time-history analyses. Several boundary conditions including unrestrained horizontal movements at the abutments and different abutment stiffnesses were considered in the nonlinear analyses. The seismic response of more than 2600 bridges were studied to determine the effects of different design and modelling parameters including the effects of different column heights, column diameters, and superstructure mass as well as different abutment stiffnesses. The bridges were designed using two different force modification factors of 3 and 5. The effects of column stiffness ratios on the elastic and inelastic analysis results, maximum ductility demands, concentration of ductility demands, and demand to capacity ratios were investigated. The results indicate that the seismic response and maximum ductility demands in the longitudinal direction are influenced by important parameters such as the total stiffness of the substructure, the column stiffness ratio, and the aspect ratio of the columns.

2013 ◽  
Vol 40 (8) ◽  
pp. 827-839 ◽  
Author(s):  
Payam Tehrani ◽  
Denis Mitchell

The transverse seismic responses of continuous 4-span bridges designed based on the 2006 Canadian Highway Bridge Design Code were studied using inelastic time history analyses. A total of 648 bridge configurations were considered in which the column heights, column diameters, superstructure stiffness and mass as well as abutment restraint conditions were studied. The maximum ductility demands obtained using elastic and inelastic analyses were compared to study the influence of the degree of irregularity. The effects of column stiffness ratios and superstructure to substructure stiffness ratios on the maximum ductility demands and concentration of ductility demands were investigated. A number of different regularity indices were compared to determine the suitability of these different indices in predicting the influence of irregularity. This study demonstrates the conservative nature of the 2006 Canadian Highway Bridge Design Code and provides some guidance on factors for determining the degree of irregularity and suitable regularity indices when carrying out nonlinear dynamic analyses of bridges.


2012 ◽  
Vol 517 ◽  
pp. 824-831
Author(s):  
Yun Xiao ◽  
Jun Qing Lei ◽  
Zhong San Li

By response spectrum method, superposition method based elastic time-history analysis and nonlinear time-history analysis of Newmark-β based linear increasing acceleration method, the finite element models of frame piers 21#~29# of the Ziya River Bridge on Tianjin to Baoding railway are established, and an assistant program code is generated to analyze seismic response of the frame pier. Results indicate that the vibration modes of frame piers are scattered. Only a few modes would be aroused in a narrow band spectrum. And the seismic response obtained by the response spectrum method is generally 10%~20% smaller than which obtained by the elastic time-history analysis. Under seismic excitations along the longitudinal direction, the ratio of displacement difference between two columns to the maximum value is generally liner increased with the increasing of the girder deviation from the centre of the pier beam. And the plastic hinge yielding would occur both at the bottom and the top of pier columns under excitations of the transversal direction. As a result, taking more than 30 vibration modes into account is suggested in a seismic response analysis or design calculation for frame piers. A time-history analysis is recommended as well. The evaluation of earthquake resistant capability of the transversal direction should consider both the bottom and top of the columns, and the anti-seismic capability design of the longitudinal direction is one of the key points for frame piers in the ductility design.


Author(s):  
Marame Brinissat ◽  
Rajmund Kuti ◽  
Zouhir Louhibi

Dynamic analysis is very important to better understand the performance of structural elements of a bridge. For this purpose, a seismic analysis of an Algerian highway bridge designed with the new Algerian seismic bridge regulation (RPOA -2008) was carried out using linear and nonlinear analyses. Therefore, response spectrum, time history analyses were performed to evaluate the seismic responses of the designed bridge. The performance of the designed bridge is assessed using 10 ground motion records. The proposed methodology allows an efficient comparison of the seismic response of the bridge in terms of base shear forces, bending moment and displacements. Finally, the paper concludes with a discussion of the specific outcomes.


1998 ◽  
Vol 14 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Yutaka Nakamura ◽  
Tsuneyoshi Nakamura

A direct procedure is presented for generating a response spectrum for an arbitrary nonexceedance probability from a prescribed design mean response spectrum. An amplification factor is derived to estimate the maximum response values of an MDOF system for a nonexceedance probability from the mean maximum ones. An efficient stiffness design method for a shear building is developed with the use of its fundamental frequency and translational eigenvector as parameters for adjusting the nonexceedance probability of the seismic drifts to the specified value. The validity and accuracy of the proposed method are demonstrated by a Monte Carlo simulation together with time-history analyses.


Author(s):  
Nima Zobeiry ◽  
Wolf Reinhardt

Based in the existing literature, it is understood that the supports strongly influence the behaviour of piping during earthquake. Given that the level of seismic dissipation depends on the specific support system, the subject of effective damping provided by seismic supports has not been widely explored. This paper investigates this issue for the feeder pipes of a CANDU® reactor. Feeders are numerous class I pipes in parallel, which are separated by frictional spacer elements. The piping system is analyzed using the time history method, taking into account the different damping mechanisms present. By comparing this and a response spectrum analysis of piping, the effective damping in the system is deduced. The effect of specific parameters on the results and the relationship between linear and nonlinear analyses are discussed.


Author(s):  
Akihito Otani ◽  
Teruyoshi Otoyo ◽  
Hideo Hirai ◽  
Hirohide Iiizumi ◽  
Hiroshi Shimizu ◽  
...  

This paper, which is part of the series entitled “Development of an Evaluation Method for Seismic Isolation Systems of Nuclear Power Facilities”, shows the linear seismic response of crossover piping installed in a seismically isolated plant. The crossover piping, supported by both isolated and non-isolated buildings, deforms with large relative displacement between the two buildings and the seismic response of the crossover piping is caused by two different seismic excitations from the buildings. A flexible and robust structure is needed for the high-pressure crossover piping. In this study, shaking tests on a 1/10 scale piping model and FEM analyses were performed to investigate the seismic response of the crossover piping which was excited and deformed by two different seismic motions under isolated and non-isolated conditions. Specifically, as linear response analysis of the crossover piping, modal time-history analysis and response spectrum analysis with multiple excitations were carried out and the applicability of the analyses was confirmed. Moreover, the seismic response of actual crossover piping was estimated and the feasibility was evaluated.


2017 ◽  
Author(s):  
George Wang ◽  
Michelle Loh ◽  
Yen-Tun Peng ◽  
Joanne Shen ◽  
P. E. Genesis ◽  
...  

2017 ◽  
Vol 3 (10) ◽  
pp. 881 ◽  
Author(s):  
Ayman Mohammed Abd-Elhamed ◽  
Sayed Mahmoud

This paper aimed to investigate the seismic response of reinforced concrete (RC) frame buildings under linear and non-linear dynamic analysis. Different building models as bare frame and fully masonry infill frame have been developed for performing the analysis. In order to investigate the effect of irregular distributions of masonry infill walls in elevation on the seismic response behavior, an infill frame model with soft story has also been developed. The linear response spectrum (RS) dynamic analysis and the nonlinear time-history (TH) analysis methods are employed. Moreover, the induced energies in terms of input, potential and kinetic are also obtained from the TH analysis. Moreover, the interaction between infill walls and frames leads to considerable change in the induced responses comparable with the bare model. 


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitation have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation test. This paper reports the validation results of the multiple-excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model (89.1mm diameter and 5.5mm thickness). Three directional moments from the analysis and the shaking test were compared on the validation. As the result, it is confirmed that the analysis by multiple time history excitation corresponds with the test result.


2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


Sign in / Sign up

Export Citation Format

Share Document