Magnetic hysteresis of 0.6–110 μm magnetites across the Verwey transition

2019 ◽  
Vol 56 (9) ◽  
pp. 958-972 ◽  
Author(s):  
David J. Dunlop ◽  
Özden Özdemir ◽  
Song Xu

We report saturation magnetization, Ms, saturation remanence, Mrs, coercive force, Hc, and remanence coercivity, Hcr, as a function of grain size, d, and temperature, T, for 0.6–135 μm magnetites. Five annealed and four unannealed samples were measured at 5–10 K intervals from 300 to 20 K. Mrs and Hc increase by factors of 1.5–4 in cooling through the Verwey transition (TV ≈ 120 K) and by smaller amounts around 50 K. Hysteresis properties change continuously over ≈20 K below TV or for annealed 0.6, 3, and 6 μm grains, within ≈10 K below TV. Hc(d) changes for annealed magnetites from ∼d–0.5 at 300 K to ∼d–0.6–d–0.7 at 120–130 K to ∼d–0.3 at 80–100 K. Day plots of Mrs(T)/Ms(T) versus Hcr(T)/Hc(T) indicate major domain structure changes with T, e.g., 6 μm grains change from large pseudo-single-domain (PSD) at 300 K to multidomain (MD) just above TV and return to PSD below TV, evolving to higher Mrs and Hc down to 20 K. Hysteresis loops change from normal at 300 K to slightly constricted near TV to severely constricted below 50 K. We interpret these results in the light of electron microscopic observations by Kasama et al. (2010 , 2012) . Hardening of magnetic hysteresis below TV and the evolution from MD to PSD, and even to single-domain in the finest grains, results from subdivision of grains by monoclinic twinning, reduced magnetic domain sizes in monoclinic magnetite, and confinement of magnetic domains within twin domains. Constricted hysteresis loops indicate coexisting magnetically hard and soft phases, initially growing monoclinic regions and residual cubic magnetite.

2016 ◽  
Vol 247 ◽  
pp. 158-167
Author(s):  
Nikolay G. Galkin ◽  
Yuri N. Kulchin ◽  
Evgenii P. Subbotin ◽  
Dmitrii S. Yatsko ◽  
Konstantin Nickolaevich Galkin ◽  
...  

Investigations of crystal structure, microstructure and composition of laser welded coatings of bronze, IN625, PGSR-4 and stainless steel alloys on non-magnetic substrates have shown that from the raw alloy powders (wire) the additional crystalline phases are extracted with new compositions and sizes of units of microns, which randomly distributed in the coating volume. Due to formation of additional phases with increased electron concentration magnetic hysteresis loops have appeared at 4 K and 300 K for all welded coatings. Bronze and stainless steel coatings have demonstrated soft ferromagnetic properties with two type of magnetic domains with small magnetization that resulted in small value of saturation magnetization (Ms = 60-146 emu/cm3 at 300 K and Ms = 107-241 emu/cm3 at 4 K) and low values of coercive force (40 – 90 Oe) at 300 K and (50-170 Oe) at 4 K. En existence of one type of ferromagnetic domains with middle Curie temperatures (230-270 K) in laser welded IN625 and PGSR-4 coatings has determined soft ferromagnetic nature of magnetism at low temperature (Ms =274 – 398 emu/cm3) and transition in paramagnetic conditions at 300 K due to main contribution only paramagnetic grains with different composition.


1982 ◽  
Vol 19 (1) ◽  
pp. 144-152 ◽  
Author(s):  
J. P. Hodych

Hysteresis loops to 1200 Oe (95 kA∙m−1) are measured between 295 and 105 K for two deep-sea basalts (DSDP, legs 34 and 37) containing large (~200 μm) unexsolved titanomagnetite grains. The Curie points, electron microprobe analyses, and saturation magnetizations of the magnetic grains are the same as for synthetic titanomagnetite (xFe2TiO4∙(1 −x)Fe3O4) with x = 0.6.As temperature is lowered from 295 to 190 K, coercive force Hc slowly rises from ~40 to ~95 Oe (3.2 to 7.6 kA∙m−1) approximately in proportion to the rise in the magnetostriction constant λ. Presumably, Hc is controlled by λ through internal stresses impeding domain wall motion. As expected of multidomain grains, the ratio of saturation remanence to saturation magnetization (in 1200 Oe (95 kA∙m−1) cycles) jR/jS rises approximately in proportion to Hc with a constant of proportionality consistent with titanomagnetite (x = 0.6).As temperature is lowered from 190 to 120 K, Hc rises rapidly to ~400 Oe (32 kA∙m−1) as a roughly linear function of the magnetocrystalline anisotropy constant K1. Perhaps Hc is now controlled by K1 through non-magnetic inclusions impeding domain wall motion.As temperature is lowered from 120 to 105 K, Hc rises even more rapidly to ~600 Oe (48 kA∙m−1). The control over Hc seems to have changed again, though most of the titanomagnetite is in grains large enough to still likely contain a few domains. The ratio jR/jS reaches 0.7 by 105 K and appears to be saturating towards the theoretical limit of 0.83.


Open Physics ◽  
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Botond Tyukodi ◽  
Ioan-Augustin Chioar ◽  
Zoltán Néda

AbstractThe topology and dynamics of stripe-like magnetic domains obtained in a ferrimagnetic garnet subjected to a time-dependent external magnetic field is studied experimentally and theoretically. Experiments are performed on a commercially available magnetic bubble apparatus, allowing the observation of the time-evolution of the magnetic domain structure. The system is modeled by a meso-scale Ising-type lattice model. Exchange and dipolar interactions between the spins, and interaction of the spins with the external magnetic field are considered. The model is investigated by kinetic Monte Carlo simulations with time-varying transition rates. In the limit of low temperatures the elaborated model leads to a magnetic domain topology and dynamics that is similar to the ones observed in the experiments. In the highly non-equilibrium limit with a high driving frequency the model reproduces the experimentally recorded hysteresis loops as well.


Author(s):  
David J Dunlop

Summary The magnetic properties of iron-bearing minerals at above ambient temperatures control their magnetic expression at depth in the Earth and other planets, as well as the permanent memory they retain as thermoremanence or thermochemical remanence when brought to the surface and cooled. This paper reports magnetic hysteresis parameters measured at temperatures up to the Curie point TC for natural pyrrhotite and hematite and for suites of sized magnetites, both natural and synthesized. Domain structure changes can be inferred from the ratio of saturation remanence Mrs to saturation magnetization Ms In almost all magnetites and pyrrhotites studied, Mrs decreases more rapidly with increasing measurement temperature T than Ms, indicating thermal unblocking or vortex development in single-domain grains and addition or remobilization of domain walls at high T in multidomain grains. During cooling of a rock, iron minerals might then denucleate domains or vortices. Coercive force Hc, a measure of stability against changing magnetic fields, also decreases with increasing measurement T, usually at a rate similar to that of Mrs, but often retains a finite value near the Curie point.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3077
Author(s):  
Javier García ◽  
Jose A. Fernández-Roldán ◽  
Roque González ◽  
Miguel Méndez ◽  
Cristina Bran ◽  
...  

Magnetic nanomaterials are of great interest due to their potential use in data storage, biotechnology, or spintronic based devices, among others. The control of magnetism at such scale entails complexing the nanostructures by tuning their composition, shape, sizes, or even several of these properties at the same time, in order to search for new phenomena or optimize their performance. An interesting pathway to affect the dynamics of the magnetization reversal in ferromagnetic nanostructures is to introduce geometrical modulations to act as nucleation or pinning centers for the magnetic domain walls. Considering the case of 3D magnetic nanowires, the modulation of the diameter across their length can produce such effect as long as the segment diameter transition is sharp enough. In this work, diameter modulated Fe67Co33 ferromagnetic nanowires have been grown into the prepatterned diameter modulated nanopores of anodized Al2O3 membranes. Their morphological and compositional characterization was carried out by electron-based microscopy, while their magnetic behavior has been measured on both the nanowire array as well as for individual bisegmented nanowires after being released from the alumina template. The magnetic hysteresis loops, together with the evaluation of First Order Reversal Curve diagrams, point out that the magnetization reversal of the bisegmented FeCo nanowires is carried out in two steps. These two stages are interpreted by micromagnetic modeling, where a shell of the wide segment reverses its magnetization first, followed by the reversal of its core together with the narrow segment of the nanowire at once.


Author(s):  
Yalcin Belli

Fe-Cr-Co alloys have great technological potential to replace Alnico alloys as hard magnets. The relationship between the microstructures and the magnetic properties has been recently established for some of these alloys. The magnetic hardening has been attributed to the decomposition of the high temperature stable phase (α) into an elongated Fe-rich ferromagnetic phase (α1) and a weakly magnetic or non-magnetic Cr-rich phase (α2). The relationships between magnetic domains and domain walls and these different phases are yet to be understood. The TEM has been used to ascertain the mechanism of magnetic hardening for the first time in these alloys. The present paper describes the magnetic domain structure and the magnetization reversal processes in some of these multiphase materials. Microstructures to change properties resulting from, (i) isothermal aging, (ii) thermomagnetic treatment (TMT) and (iii) TMT + stepaging have been chosen for this investigation. The Jem-7A and Philips EM-301 transmission electron microscopes operating at 100 kV have been used for the Lorentz microscopy study of the magnetic domains and their interactions with the finely dispersed precipitate phases.


Author(s):  
K. Shi rota ◽  
A. Yonezawa ◽  
K. Shibatomi ◽  
T. Yanaka

As is well known, it is not so easy to operate a conventional transmission electron microscope for observation of magnetic materials. The reason is that the instrument requires re-alignment of the axis and re-correction of astigmatism after each specimen shift, as the lens field is greatly disturbed by the specimen. With a conventional electron microscope, furthermore, it is impossible to observe magnetic domains, because the specimen is magnetized to single orientation by the lens field. The above mentioned facts are due to the specimen usually being in the lens field. Thus, special techniques or systems are usually required for magnetic material observation (especially magnetic domain observation), for example, the technique to switch off the objective lens current and Lorentz microscopy. But these cannot give high image quality and wide magnification range, and furthermore Lorentz microscopy is very complicated.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


Sign in / Sign up

Export Citation Format

Share Document