Ecological and genetic risks arising from reproductive interactions between wild and farmed Chinook salmon

2013 ◽  
Vol 70 (12) ◽  
pp. 1691-1698 ◽  
Author(s):  
Sarah J. Lehnert ◽  
John W. Heath ◽  
Daniel D. Heath

Escapes from aquaculture sites may threaten wild populations through ecological risks such as reproductive interference and genetic risks through successful hybridization. Mating studies examining wild–farmed interactions should quantify fertilization and reproductive success separately through genotyping of eggs and fry, respectively, to estimate ecological and genetic risks. We examined fertilization and reproductive success (fry survival to 158 and 201 days) of farmed (XY and XX males) and wild Chinook salmon (Oncorhynchus tshawytscha) males in competitive seminatural spawning channels with farmed females. XY and XX farmed males did not differ in fertilization and reproductive success. Farmed and wild males exhibited no difference in fertilization success; however, farmed males experienced significantly lower reproductive success relative to wild owing to differences in egg-to-fry survival because of competition with wild-sired offspring. Therefore, farmed males pose ecological risk to wild populations by removing reproductive opportunities from wild males, potentially reducing wild salmon productivity. However, low survival of farm-sired offspring will reduce further opportunities for interbreeding between wild and farm-raised fish. Nevertheless, research is needed to further quantify these genetic impacts.

2013 ◽  
Vol 280 (1772) ◽  
pp. 20132047 ◽  
Author(s):  
Jonathan P. Evans ◽  
Patrice Rosengrave ◽  
Clelia Gasparini ◽  
Neil J. Gemmell

Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha , a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection.


2013 ◽  
Vol 70 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Melissa L. Evans ◽  
Bryan D. Neff ◽  
Daniel D. Heath

Sexual selection is recognized as an important evolutionary force in salmon. However, relatively little is known about variation in sexual selection pressures across salmon populations or the potential role of natural selection as a driver of adaptive mating patterns. Here, we examine mating behaviour and correlates of reproductive success in Chinook salmon (Oncorhynchus tshawytscha) from the Quinsam and Little Qualicum rivers in British Columbia, Canada — two populations for which we have previously found evidence of natural selection operating on major histocompatibility complex (MHC) genes. In both populations, males courted females and exhibited dominance behaviour towards other males, and the frequency of each behaviour was positively associated with reproductive success. Males were more aggressive towards females with whom they would produce offspring of low or high MHC class II diversity, and the offspring of males from the Quinsam River exhibited higher diversity at the MHC class I than expected. We discuss our results in relation to local natural selection pressures on the MHC and the potential for MHC-dependent mate choice.


2017 ◽  
Vol 284 (1859) ◽  
pp. 20170853 ◽  
Author(s):  
Cornelia Geßner ◽  
Sheri L. Johnson ◽  
Paul Fisher ◽  
Shannon Clarke ◽  
Kim Rutherford ◽  
...  

In a range of taxa, the relatedness between mates influences both pre- and post-mating processes of sexual selection. However, relatively little is known about the genetic loci facilitating such a bias, with the exception of the major histocompatibility complex. Here, we performed tightly controlled replicated in vitro fertilization trials to explore the impact of relatedness on two possible mechanisms of cryptic female choice (CFC) in Chinook salmon ( Oncorhynchus tshawytscha ). We tested (i) whether relatedness of mates, assessed using 682 single nucleotide polymorphisms (SNPs) on 29 SNP-linkage groups (LGs), biases a male's sperm velocity in ovarian fluid (a parameter previously shown to predict male fertilization success), and (ii) whether relatedness of mates governs fertilization success via other mechanisms, probably via sperm–egg interactions. We found that relatedness on three LGs explained the variation in sperm velocity, and relatedness on two LGs explained fertilization success, which might indicate the presence of genes important in sperm–ovarian fluid and sperm–egg interactions in these genomic regions. Mapping of the SNPs on these LGs to the rainbow trout genome revealed two genes that affect fertility in humans and represent candidate genes for further studies. Our results thereby provide a novel contribution to the understanding of the mechanism of CFC.


2014 ◽  
Vol 6 (1) ◽  
pp. 176-186
Author(s):  
Michael C. Hayes ◽  
Stephen P. Rubin ◽  
Reginald R. Reisenbichler ◽  
Lisa A. Wetzel

Abstract Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P < 0.01). In addition, they differed significantly (P < 0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P < 0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.


2007 ◽  
Vol 64 (12) ◽  
pp. 1683-1692 ◽  
Author(s):  
Rachel Barnett-Johnson ◽  
Churchill B Grimes ◽  
Chantell F Royer ◽  
Christopher J Donohoe

Quantifying the contribution of wild (naturally spawned) and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the mixed-stock ocean fishery is critical to understanding their relative importance to the persistence of salmon stocks. The inability to distinguish hatchery and wild salmon has inhibited the detection of declines or recoveries for many wild populations. By using Chinook salmon of known hatchery and wild origin, we established a baseline for separating these two sources using otolith microstructure. Otoliths of wild salmon contained a distinct exogenous feeding check likely reflecting an abrupt transition in food resources from maternal yolk not experienced by fish reared in hatcheries. Daily growth increments in otoliths from hatchery salmon immediately after the onset of exogenous feeding were wider and more uniform in width than those in wild fish. The discriminant function that we used to distinguish individuals reared in hatcheries or in the wild was robust between years (1999 and 2002), life history stages (juveniles and adults), and geographic regions (California, British Columbia, and Alaska) and classified fish with ~91% accuracy. Results from our mixed-stock model estimated that the contribution of wild fish was 10% ± 6%, indicating hatchery supplementation may be playing a larger role in supporting the central California coastal fishery than previously assumed.


2015 ◽  
Vol 72 (9) ◽  
pp. 1390-1397 ◽  
Author(s):  
Nicholas M. Sard ◽  
Kathleen G. O’Malley ◽  
Dave P. Jacobson ◽  
Michael J. Hogansen ◽  
Marc A. Johnson ◽  
...  

Dams have contributed to the decline of migratory fishes by blocking access to historical habitat. The active transport (trap and haul) of migratory fish species above existing dams can sometimes support population recovery when the use of fish ladders or dam removal is infeasible. However, little is known about the efficacy of trap and haul conservation strategies. Here we used genetic parentage assignments to evaluate the efficacy of reintroducing adult Chinook salmon (Oncorhynchus tshawytscha) above Cougar Dam on the South Fork McKenzie River, Oregon, USA, from 2008 to 2011. We found that mean reproductive success (RS) declined as adults were released later in the spawning season in 2009 and 2010; however, release location did not affect RS. In 2010 and 2011, we tested for RS differences between hatchery and natural origin (HOR and NOR, respectively) adults. HOR males were consistently less fit than NOR males, but little evidence for fitness differences was apparent between HOR and NOR females. Interestingly, the effect of origin on RS was not significant after accounting for variation explained by body length. Our results indicate that release date and location have inconsistent or no effect on the reproductive success of reintroduced adults when active transport strategies are employed for migratory fishes.


2016 ◽  
Vol 283 (1827) ◽  
pp. 20160001 ◽  
Author(s):  
Patrice Rosengrave ◽  
Robert Montgomerie ◽  
Neil Gemmell

In this study, we investigated two potentially important intersexual postcopulatory gametic interactions in a population of chinook salmon ( Oncorhynchus tshawytscha ): (i) the effect of female ovarian fluid (OF) on the behaviour of spermatozoa during fertilization and (ii) the effects of multilocus heterozygosity (MLH) (as an index of male quality) and female–male genetic relatedness on sperm behaviour and male fertilization success when there is sperm competition in the presence of that OF. To do this, we conducted a series of in vitro competitive fertilization experiments and found that, when ejaculates from two males are competing for access to a single female's unfertilized eggs, fertilization success was significantly biased towards the male whose sperm swam fastest in the female's OF. Embryo survival—a measure of fitness—was also positively correlated with both sperm swimming speed in OF and male MLH, providing novel evidence that cryptic female choice is adaptive for the female, enhancing the early survival of her offspring and potentially influencing her fitness.


2016 ◽  
Vol 73 (5) ◽  
pp. 844-852 ◽  
Author(s):  
Melissa L. Evans ◽  
Marc A. Johnson ◽  
Dave Jacobson ◽  
Jinliang Wang ◽  
Michael Hogansen ◽  
...  

Dams, utilized for hydroelectric or flood control purposes, obstruct organism dispersal and have contributed to the decline of many migratory fish populations. For threatened Chinook salmon (Oncorhynchus tshawytscha) from the Willamette River Basin in Oregon, human-assisted reintroductions are being used to facilitate dispersal to historical habitats located above dams. However, little is known about the reproductive outcomes of reintroduced individuals or the efficacy of reintroductions towards the goal of population demographic viability. Using genetic parentage assignments to 3-, 4-, and 5-year-old adult recruits, we estimated the fitness of hatchery and wild Chinook salmon reintroduced above Foster Dam on the South Santiam River, a tributary of the Willamette River. Our parentage assignments indicated that the fitness of reintroduced salmon was highly variable, with individuals producing a range of 0–40 adult progeny. We also detected a possible trend towards reduced fitness in mate pairs composed of hatchery versus wild salmon. For each of three brood years (2007, 2008, 2009), adult offspring recruitment achieved or exceeded population replacement. We observed the highest cohort replacement rate in 2009, the first year that managers aimed to release wild salmon solely above the dam. Taken together, our results suggest that human-assisted reintroductions of mature adult salmon to historical spawning habitats are a promising method of restoring natural production in populations affected by dams. Moreover, the continued used of wild fish in reintroduction operations may improve population productivity and the prospect of recovery within the South Santiam River.


1992 ◽  
Vol 14 ◽  
pp. 81-89 ◽  
Author(s):  
ML Kent ◽  
J Ellis ◽  
JW Fournie ◽  
SC Dawe ◽  
JW Bagshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document