Shifts in plankton size spectra modulate growth and coexistence of anchovy and sardine in upwelling systems

2016 ◽  
Vol 73 (4) ◽  
pp. 611-621 ◽  
Author(s):  
T. Mariella Canales ◽  
Richard Law ◽  
Julia L. Blanchard

Fluctuations in the abundance of anchovy (Engraulis spp.) and sardine (Sardinops sagax) are widespread in marine ecosystems, but the causes still remain uncertain. Differences between the planktonic prey availability, selectivity, and predation between anchovy and sardine have been suggested as factors influencing their dynamics. Using a dynamical multispecies size-spectrum model, we explore the consequences of changes in plankton size composition, together with intraguild predation and cannibalism, on the coexistence of these species. The shift towards smaller plankton has led to a reduction in the growth rate of both species. The effect was more deleterious on anchovy growth because it is unable to filter small particles. In model scenarios that included the effects of cannibalism and predation, anchovy typically collapsed under conditions favouring smaller sized plankton. The two species coexisted under conditions of larger sized plankton, although strong predation in conjunction with weak cannibalism led to the loss of sardine. The model provides new testable predictions for the consequences of plankton size structure on anchovy and sardine fluctuations. Further empirical work is needed to test these predictions in the context of climate change.

2004 ◽  
Vol 61 (3) ◽  
pp. 414-431 ◽  
Author(s):  
Yunne-Jai Shin ◽  
Philippe Cury

For most fish species, strong environmental constraints imposed by living in an aquatic medium have produced converging streamlined body forms without prehensile appendices. This similarity in body shapes highlights a common predation constraint: a predatory fish must have a jaw large enough to swallow its prey. Fish diets may then reflect local prey availability and predator–prey size ratios. Based on this size-based opportunistic predation process, the multispecies individual-based model OSMOSE (Object-oriented Simulator of Marine ecOSystem Exploitation) is used to investigate to what extent the size distribution of fish communities can contribute to better our understanding of the functioning of marine food webs and the ecosystem effects of fishing. Strong similarity in shape is found between simulated size spectra and those described in empirical studies. The existence of a curvature towards small size classes is discussed in the light of the size-based predation hypothesis, which implies that smaller fish may undergo higher predation mortality. Applying linear and quadratic regressions to the simulated size spectra allows the detection of variations in fishing pressure and the proposal of different ways to quantify them. In particular, it is shown that the slope of the size spectrum decreases quasilinearly with fishing mortality and that the curvature could help to detect ecosystem overexploitation.


2016 ◽  
Vol 73 (4) ◽  
pp. 589-597 ◽  
Author(s):  
Michael A. Spence ◽  
Paul G. Blackwell ◽  
Julia L. Blanchard

Dynamic size spectrum models have been recognized as an effective way of describing how size-based interactions can give rise to the size structure of aquatic communities. They are intermediate-complexity ecological models that are solutions to partial differential equations driven by the size-dependent processes of predation, growth, mortality, and reproduction in a community of interacting species and sizes. To be useful for quantitative fisheries management these models need to be developed further in a formal statistical framework. Previous work has used time-averaged data to “calibrate” the model using optimization methods with the disadvantage of losing detailed time-series information. Using a published multispecies size spectrum model parameterized for the North Sea comprising 12 interacting fish species and a background resource, we fit the model to time-series data using a Bayesian framework for the first time. We capture the 1967–2010 period using annual estimates of fishing mortality rates as input to the model and time series of fisheries landings data to fit the model to output. We estimate 38 key parameters representing the carrying capacity of each species and background resource, as well as initial inputs of the dynamical system and errors on the model output. We then forecast the model forward to evaluate how uncertainty propagates through to population- and community-level indicators under alternative management strategies.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Axel G. Rossberg ◽  
Ursula Gaedke ◽  
Pavel Kratina

Abstract In ecological communities, especially the pelagic zones of aquatic ecosystems, certain body-size ranges are often over-represented compared to others. Community size spectra, the distributions of community biomass over the logarithmic body-mass axis, tend to exhibit regularly spaced local maxima, called “domes”, separated by steep troughs. Contrasting established theory, we explain these dome patterns as manifestations of top-down trophic cascades along aquatic food chains. Compiling high quality size-spectrum data and comparing these with a size-spectrum model introduced in this study, we test this theory and develop a detailed picture of the mechanisms by which bottom-up and top-down effects interact to generate dome patterns. Results imply that strong top-down trophic cascades are common in freshwater communities, much more than hitherto demonstrated, and may arise in nutrient rich marine systems as well. Transferring insights from the general theory of non-linear pattern formation to domes patterns, we provide new interpretations of past lake-manipulation experiments.


2014 ◽  
Vol 71 (9) ◽  
pp. 1324-1333 ◽  
Author(s):  
Peder M. Yurista ◽  
Daniel L. Yule ◽  
Matt Balge ◽  
Jon D. VanAlstine ◽  
Jo A. Thompson ◽  
...  

We synthesized data from multiple sampling programs and years to describe the Lake Superior pelagic biomass size structure. Data consisted of Coulter counts for phytoplankton, optical plankton counts for zooplankton, and acoustic surveys for pelagic prey fish. The size spectrum was stable across two time periods separated by 5 years. The primary scaling or overall slope of the normalized biomass size spectra for the combined years was −1.113, consistent with a previous estimate for Lake Superior (−1.10). Periodic dome structures within the overall biomass size structure were fit to polynomial regressions based on the observed sub-domes within the classical taxonomic positions (algae, zooplankton, and fish). This interpretation of periodic dome delineation was aligned more closely with predator–prey size relationships that exist within the zooplankton (herbivorous, predacious) and fish (planktivorous, piscivorous) taxonomic positions. Domes were spaced approximately every 3.78 log10 units along the axis and with a decreasing peak magnitude of −4.1 log10 units. The relative position of the algal and herbivorous zooplankton domes predicted well the subsequent biomass domes for larger predatory zooplankton and planktivorous prey fish.


Author(s):  
В. Крыленко ◽  
V. Krylenko ◽  
Р. Косьян ◽  
R. Kos'yan ◽  
М. Крыленко ◽  
...  

The results of realized in 2010 field researches of the spatial and time grain-size structure variability of beach and bottom sediments of the bay-bar Anapskaya southern part are presented in this paper. Irretrievable carrying out of sediment particles to depths more than 7 m intensifies with their size decrease to 0,1 mm. As over 70 % bottom and about 60 % beach sediments are presented by fractions less 0,16 mm on bay-bar Anapskaya southern part, namely at this part there is sand material massive carrying out to depth. Potential danger of the investigated site geosystem degradation is revealed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph M. Eisaguirre ◽  
Perry J. Williams ◽  
Xinyi Lu ◽  
Michelle L. Kissling ◽  
William S. Beatty ◽  
...  

Abstract Background Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. Methods Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. Results Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1–8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. Conclusions This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.


2020 ◽  
Vol 206 ◽  
pp. 104197
Author(s):  
L. Jagadeesan ◽  
T.N.R. Srinivas ◽  
A. Surendra ◽  
G. Sampath Kumar ◽  
M.P Aswindev ◽  
...  

Author(s):  
Benjamin A. Turschak ◽  
Charles R. Bronte ◽  
Sergiusz J. Czesny ◽  
Brandon S. Gerig ◽  
Austin Happel ◽  
...  

Stable isotope analyses offer a useful means for quantifying ecological niche dimensions, though few studies have examined isotopic response of an ecological community with respect to resource gradients such as fluctuations in prey availability. Stable carbon and nitrogen isotopes were measured for Lake Michigan salmonines and their prey collected from 2014 to 2016. Bayesian ellipse and mixing model analyses were used to quantify isotopic niche characteristics and diets, respectively, among species and years. During the three-year study period, abundance and size structure of preferred alewife prey changed substantially and offered an opportunity to explore predator isotopic niche response and diet shifts along a prey resource gradient. Results suggested increased reliance on alewives, especially small alewives, over the study period and were consistent with greater availability of this prey. However, differential use of alewife size classes and alternative prey sources by salmonine predators was apparent, which suggested possible resource partitioning. Characterization of ecological niche overlap using stable isotopes likely requires consideration of shared resource availability as well as specific prey and habitat preferences.


2018 ◽  
Vol 75 (2) ◽  
pp. 451-467 ◽  
Author(s):  
Gaetano Sardina ◽  
Stéphane Poulain ◽  
Luca Brandt ◽  
Rodrigo Caballero

Abstract The authors study the condensational growth of cloud droplets in homogeneous isotropic turbulence by means of a large-eddy simulation (LES) approach. The authors investigate the role of a mean updraft velocity and of the chemical composition of the cloud condensation nuclei (CCN) on droplet growth. The results show that a mean constant updraft velocity superimposed onto a turbulent field reduces the broadening of the droplet size spectra induced by the turbulent fluctuations alone. Extending the authors’ previous results regarding stochastic condensation, the authors introduce a new theoretical estimation of the droplet size spectrum broadening that accounts for this updraft velocity effect. A similar reduction of the spectra broadening is observed when the droplets reach their critical size, which depends on the chemical composition of CCN. The analysis of the square of the droplet radius distribution, proportional to the droplet surface, shows that for large particles the distribution is purely Gaussian, while it becomes strongly non-Gaussian for smaller particles, with the left tail characterized by a peak around the haze activation radius. This kind of distribution can significantly affect the later stages of the droplet growth involving turbulent collisions, since the collision probability kernel depends on the droplet size, implying the need for new specific closure models to capture this effect.


2016 ◽  
Vol 74 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Michael J. Plank

Balanced harvesting (BH) was introduced as an alternative strategy to size-at-entry fishing with the aim of maintaining ecosystem structure and functioning. BH has been criticized on a number of grounds, including that it would require an infeasible level of micromanagement and enforcement. Recent results from a size-spectrum model show that the distribution of fishing mortality across body sizes that emerges from the behaviour of a large number of fishing agents corresponds to BH in a single species. Size-spectrum models differ from classical size-structured models used in fisheries as they are based on a bookkeeping of biomass transfer from prey to predator rather than a von Bertalanffy growth model. Here we investigate a classical Beverton-Holt model coupled with the Gordon-Schaefer harvesting model extended to allow for differential fishing pressure at different body sizes. This models an open-access fishery in which individual fishing agents act to maximize their own economic return. We show that the equilibrium of the harvesting model produces an aggregate fishing mortality that is closely matched to the production at different body sizes, in other words BH of a single species. These results have significant implications because they show that the robustness of BH does not depend on arguments about the relative production levels of small versus large fish.


Sign in / Sign up

Export Citation Format

Share Document