Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction

2014 ◽  
Vol 44 (6) ◽  
pp. 648-656 ◽  
Author(s):  
Sergio de-Miguel ◽  
Lauri Mehtätalo ◽  
Ali Durkaya

Large-scale prediction of forest biomass is of interest for forest science, ecology, and issues related to climate change. Previous research has attempted to provide allometric models suitable for large-scale biomass prediction using different methods. We present a new approach for meta-analysis of existing biomass equations using mixed-effects modelling on simulated data. The resulting generalized meta-models can be calibrated for local conditions. This meta-analytical approach allows for directly benefiting from previous research to minimize data collection and properly take into account the unknown differences between different locations within large areas. The approach is demonstrated by developing pan-Mediterranean mixed-effects meta-models for Pinus brutia Ten. The fixed part of the meta-models enables sound aboveground biomass predictions throughout practically the full native range of the species. Significant improvement in the predictive performance can be further gained by using small local datasets for model calibration. The calibration procedure for location-specific biomass prediction is based on best linear unbiased predictor of random effects. The predictive performance of the meta-models under different sampling strategies is validated in an independent dataset. The results show that mixed-effects meta-models may enable accurate and robust large-scale biomass predictions. Calibration for specific locations based on minimal data collection effort performs better than fitting location-specific equations based on much larger samples. The advantages of mixed-effects meta-models are of interest not only for further biomass-related research and applications, but also for other modelling disciplines within forest science.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierre Ploton ◽  
Frédéric Mortier ◽  
Maxime Réjou-Méchain ◽  
Nicolas Barbier ◽  
Nicolas Picard ◽  
...  

Abstract Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power. To illustrate this issue, we reproduce the approach of large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in central Africa to train and validate a random forest model based on multispectral and environmental variables. A standard nonspatial validation method suggests that the model predicts more than half of the forest biomass variation, while spatial validation methods accounting for SAC reveal quasi-null predictive power. This study underscores how a common practice in big data mapping studies shows an apparent high predictive power, even when predictors have poor relationships with the ecological variable of interest, thus possibly leading to erroneous maps and interpretations.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


2002 ◽  
Vol 18 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Olga F. Voskuijl ◽  
Tjarda van Sliedregt

Summary: This paper presents a meta-analysis of published job analysis interrater reliability data in order to predict the expected levels of interrater reliability within specific combinations of moderators, such as rater source, experience of the rater, and type of job descriptive information. The overall mean interrater reliability of 91 reliability coefficients reported in the literature was .59. The results of experienced professionals (job analysts) showed the highest reliability coefficients (.76). The method of data collection (job contact versus job description) only affected the results of experienced job analysts. For this group higher interrater reliability coefficients were obtained for analyses based on job contact (.87) than for those based on job descriptions (.71). For other rater categories (e.g., students, organization members) neither the method of data collection nor training had a significant effect on the interrater reliability. Analyses based on scales with defined levels resulted in significantly higher interrater reliability coefficients than analyses based on scales with undefined levels. Behavior and job worth dimensions were rated more reliable (.62 and .60, respectively) than attributes and tasks (.49 and .29, respectively). Furthermore, the results indicated that if nonprofessional raters are used (e.g., incumbents or students), at least two to four raters are required to obtain a reliability coefficient of .80. These findings have implications for research and practice.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2020 ◽  
Vol 17 (2) ◽  
pp. 105-111
Author(s):  
Haitao Liu ◽  
Wei Ge ◽  
Wei Chen ◽  
Xue Kong ◽  
Weiming Jian ◽  
...  

Objectives: Previous case-control studies have focused on the relationship between ALDH2 gene polymorphism and late-onset Alzheimer's Disease (LOAD), but no definite unified conclusion has been reached. Therefore, the correlation between ALDH2 Glu504Lys polymorphism and LOAD remains controversial. To analyze the correlation between ALDH2 polymorphism and the risk of LOAD, we implemented this up-to-date meta-analysis to assess the probable association. Methods: Studies were searched through China National Knowledge Infrastructure (CNKI), VIP Database for Chinese Technical Periodicals, China Biology Medicine, PubMed, Cochrane Library, Clinical- Trials.gov, Embase, and MEDLINE from January 1, 1994 to December 31, 2018, without any restrictions on language and ethnicity. Results: Five studies of 1057 LOAD patients and 1136 healthy controls met our criteria for the analysis. Statistically, the ALDH2 GA/AA genotype was not linked with raising LOAD risk (odds ratio (OR) = 1.48, 95% confidence interval (CI) = 0.96-2.28, p = 0.07). In subgroup analysis, the phenomenon that men with ALDH2*2 had higher risk for LOAD (OR = 1.72, 95%CI = 1.10-2.67, p = 0.02) was observed. Conclusions: This study comprehends only five existing case-control studies and the result is negative. The positive trend might appear when the sample size is enlarged. In the future, more large-scale casecontrol or cohort studies should be done to enhance the association between ALDH2 polymorphism and AD or other neurodegenerative diseases.


Author(s):  
Qingtao Jiang ◽  
Feng Zhang ◽  
Lei Han ◽  
Baoli Zhu ◽  
Xin Liu

<b><i>Introduction:</i></b> The association of serum copper with polycystic ovarian syndrome (PCOS) has been studied for years, but no definite conclusion is drawn. Therefore, we conducted a meta-analysis to investigate serum copper concentrations in PCOS subjects compared with healthy controls. <b><i>Methods:</i></b> Electronic search was performed in PubMed, Google Scholar, and Scopus up to June 30, 2020, without any restriction. Standardized mean differences (SMDs) with corresponding 95% CIs in serum copper levels were employed with random-effects model. <i>I</i><sup>2</sup> was applied to evaluate heterogeneity among studies. <b><i>Results:</i></b> Nine studies, measuring plasma copper levels in 1,168 PCOS patients and 1,106 controls, were included. Pooled effect size suggested serum copper level was significantly higher in women with PCOS (SMD = 0.51 μg/mL, 95% CI = [0.30, 0.72], <i>p</i> &#x3c; 0.0001). The overall heterogeneity was not connected with subgroups of the country, but derived from the opposite result of 1 study. <b><i>Conclusion:</i></b> Our research generally indicated circulating copper level in PCOS sufferers was significantly higher than normal controls. Large-scale studies are still needed to elucidate the clear relation between copper status and etiology of PCOS.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


Sign in / Sign up

Export Citation Format

Share Document