scholarly journals Implications of the reservation price strategy on the optimal harvest decision and production of nontimber goods in an even-aged forest stand

2019 ◽  
pp. 287-296
Author(s):  
Andres Susaeta ◽  
Peichen Gong ◽  
Damian Adams

This study analyzes the effects of adopting an adaptive harvest strategy in even-aged forest management under timber price uncertainty on the production of nontimber goods. We use the reservation price strategy (“harvest when the observed timber prices are higher than the reservation prices”) on a longleaf pine (Pinus palustris Mill.) stand and employ the Faustmann–Hartman model as a benchmark. We assume that a longleaf pine stand can be managed for timber production, water production, carbon sequestration, and pine straw raking, depending on the planting density. Our results indicate that the reservation price strategy leads to longer expected harvest age when planting density is high. The reservation price strategy does not lead to increases in water production and carbon sequestration with low planting density. With high planting density, the reservation price strategy leads to increases in the amount of in situ carbon sequestered by 14.4–24.7 Mg·ha–1. Our findings suggest that managing longleaf pine forests in good- or poor-quality sites is a profitable alternative and enables water production and carbon sequestration.

2021 ◽  
Author(s):  
John P McGuire ◽  
John S Kush ◽  
J Morgan Varner ◽  
Dwight K Lauer ◽  
J Ryan Mitchell

Abstract Efforts to restore longleaf pine (Pinus palustris Mill.) in the southeastern US require substantial artificial regeneration. Once established, important questions remain about when to introduce fire. We investigated the impact of initial planting density on tree branching and how prescribed fire might interact with tree architecture and survival. A particular focus was on how prescribed fires could “prune” lower branches. Lower density plantings (897 trees ha−1) had more and larger live lower branches than higher density plantings (2,243 trees ha−1). Fire was effective in pruning lower branches regardless of season burned, but fire in the growing season was more effective at pruning. Branches up to a height of 1.5 to 2 m were killed by fire. Fire applied in August caused greater damage with more needles scorched and/or consumed and more stem char. Prescribed fire did not impact longleaf pine tree survival. In general, fire applied to longleaf pine facilitated pruning lower branches that affect long-term wood quality, an additional argument for its utility in restoration and management of these ecosystems.


2021 ◽  
Author(s):  
Sydney Oluoch ◽  
Pankaj Lal ◽  
Bernabas Wolde ◽  
Andres Susaeta ◽  
Josè R Soto ◽  
...  

Abstract Longleaf pine (LLP) (Pinus palustris Mill.) is well known for its role in supporting healthy ecosystems in the southeastern (SE) United States (US). The decline of LLP forest ecosystems has led to a consensus among stakeholders that restoration efforts are needed. However, there is still a lack of robust understanding of the utilization of nonmarket ecosystem services of LLP forests. These challenges have presented major barriers to landowner acceptance of subsidized LLP restoration programs. Understanding the tradeoffs between forest ecosystem services is critical to restoring LLP in the SE US. This study employs the best-worst choice (BWC) method to assess public preferences toward hypothetical LLP restoration programs that consider ecosystem services such as recreation, timber production, carbon sequestration, water yield, and wildlife diversity. We surveyed a representative sample of n = 953 respondents from Alabama, Mississippi, Georgia, and Florida, and results showed that residents in all four states are willing to pay for LLP restoration, with the highest average willingness to pay (WTP) for forest recreation ($20.39), followed by red-cockaded woodpecker (RCW) conservation ($13.37) and carbon sequestration ($13.32). This research provides important public preference information on ecosystem services that is critical in forming sustainable LLP restoration programs. Study Implications This study is useful from a policy assessment perspective for evaluating benefits and costs of LLP restoration programs in the SE US, for informing program design, and understanding tradeoffs between LLP ecosystem services. The public plays an important role in influencing environmental policy choices, including LLP restoration programs.


2010 ◽  
Vol 36 (2) ◽  
pp. 93-99
Author(s):  
Belinda Lambert ◽  
Steven Harper ◽  
Stephen Robinson

The ecosystem restoration and wetland mitigation industries are challenged with recreating vegetative communities at an accelerated rate, while at the same time remaining cost effective. These created systems are typically bound by permit conditions to meet certain tree growth criteria in a specified time frame, commonly five years. Stock sizes of container grown trees are generally #1, #3, or #7 (gallons). The purpose of this study was to determine the relative cost effectiveness of these planting sizes for three commonly used species and to assess whether they achieve common success criteria for height, percent survival, and percent cover. These three species are baldcypress [Taxodium distichum (L.) Rich], red maple (Acer rubrum L.), and longleaf pine (Pinus palustris Mill.). Based on the standard planting density of 174 trees/hectare, the most cost-effective size was #3 in all cases. All three sizes of baldcypress and red maple met the 3.7 m height criterion; no size of longleaf pine met the criterion. All sizes of all species failed to meet both the 85% survival standard and a theoretical minimum 50% cover calculated from canopy diameter measurements. If planting densities are increased to meet cover requirements and to offset mortality, container size #1 may be more favorable for baldcypress and red maple, but not for longleaf pine. The study was conducted in Pinellas County, Florida, U.S.


2011 ◽  
Vol 20 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Benjamin J. Shepherd ◽  
Deborah L. Miller ◽  
Mack Thetford

2021 ◽  
Vol 39 (3) ◽  
pp. 115-122
Author(s):  
Zachary Singh ◽  
Adam Maggard ◽  
Rebecca Barlow ◽  
John Kush

Abstract Longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm.) are two southern pine species that are popular for producing pine straw for landscaping. The objective of this research was to determine the response of soil properties and weed growth to the application of pine straw. Longleaf pine, slash pine, and two non-mulched controls (with and without chemical weed control) were tested. Volumetric soil water content, soil nutrients, soil temperature, weed biomass, and seedling growth were measured. Compared to non-mulched controls, both longleaf and slash pine plots had a greater soil moisture during extended periods without rainfall in the full sun environment. When soil temperatures increased, mulched plots had lower soil temperature relative to non-mulched plots. Soil pH and soil nutrients were generally similar between pine straw types with few significant differences in measured variables. Both pine straw treatments reduced weed growth and longleaf pine maintained a greater straw depth over the study period compared to slash pine, but no differences were observed for decomposition. These results indicate that longleaf pine straw and slash pine straw perform equally as well in terms of increasing soil moisture, moderating soil temperature, and reducing weed growth compared to not using mulch. Index words: Pinus elliottii, Pinus palustris, organic mulch, soil properties, landscaping. Species used in this study: Shumard oak, Quercus shumardii Buckl., Eastern redbud, Cercis canadensis L.


2020 ◽  
Vol 14 (2) ◽  
pp. 413-433
Author(s):  
William J. McFarland, ◽  
Danielle Cotton, ◽  
Mac H. Alford ◽  
Micheal A. Davis

Longleaf pine (Pinus palustris Mill.) ecosystems exhibit high species diversity and are major contributors to the extraordinary levels of regional biodiversity and endemism found in the North American Coastal Plain Province. These forests require frequent fire return intervals (every 2–3 years) to maintain this rich diversity. In 2009, a floristic inventory was conducted at the Lake Thoreau Environmental Center owned by the University of Southern Mississippi in Hattiesburg, Mississippi. The Center is located on 106 ha with approximately half covered by a 100+ year old longleaf pine forest. When the 2009 survey was conducted, fire had been excluded for over 20 years resulting in a dense understory dominated by woody species throughout most of the forest. The 2009 survey recorded 282 vascular plant species. Prescribed fire was reintroduced in 2009 and reapplied again in 2010, 2012, 2014, 2016, and 2018. A new survey was conducted in 2019 to assess the effects of prescribed fire on floristic diversity. The new survey found an additional 268 species bringing the total number of plants species to 550. This study highlights the changes in species diversity that occurs when fire is reintroduced into a previously fire-suppressed system and the need to monitor sensitive areas for changes in species composition.


Author(s):  
Scott Pokswinski ◽  
Michael R. Gallagher ◽  
Nicholas S. Skowronski ◽  
E. Louise Loudermilk ◽  
Joseph J. O'Brien ◽  
...  

Firebrands are an important agent of wildfire spread and structure fire ignitions at the wildland urban interface. Bark flake morphology has been highlighted as an important, yet poorly characterized factor in firebrand generation, transport, deposition, and ignition of unburned material. Using pine species where bark flakes are the documented source of embers, we conducted experiments to investigate how bark structure changes in response to diurnal drying. Over a 3-day period in a longleaf pine (Pinus palustris Mill.) stand in Florida, we recorded changes in temperature, moisture content and structure of bark across different facing aspects of mature pine trees to examine the effects of varying solar exposure on bark moisture. We further compared results to bark drying in a pitch pine (Pinus rigida Mill.) plantation in New Jersey. Under all conditions, bark peeled and lifted away from the tree trunk over the study periods. Tree bole aspect and the time of day interacted to significantly affect bark peeling. General temperature increases and moisture content decreases were significantly different between east and west aspects in pitch pine, and with time of day and aspect in longleaf pine. These results illustrate that bark moisture and flakiness is highly dynamic on short time scales, driven largely by solar exposure. These diurnal changes likely influence the probability of firebrand production during fire events via controls on moisture (ignition) and peeling (lofting).


Sign in / Sign up

Export Citation Format

Share Document