Impact of oblique magnetic viscous dissipative transport on chemically reactive micro-rotations submerged in porous medium

2018 ◽  
Vol 96 (12) ◽  
pp. 1349-1358
Author(s):  
Zaffar Mehmood ◽  
Z. Iqbal ◽  
E.N. Maraj ◽  
Ehtsham Azhar

The present communication aims to investigate the influence of inclined magnetic field and Joule heating phenomenon in the presence of chemical reaction on micro-rotation of particles suspended in a viscoplastic fluid submerged in a porous medium. Casson fluid is considered as a viscoplastic fluid. Governing physical problem modeling and formulation is performed in the Cartesian coordinate system. A system of partial differential equations is reduced to a system of ordinary differential equations by means of suitable transformation. Nonlinear coupled system is solved numerically with the help of a shooting algorithm. Numerical investigation is carried out for strong and weak concentrations at the boundary. Emerging parameters’ effects on fluid micro-rotation velocities and temperature distribution are displayed and analyzed through graphs for strong and weak concentrations. Further, numerical values of skin friction coefficient and Nusselt number are tabulated for pertinent parameters. From the present analysis it is concluded that fluid decelerates with an increase in Casson fluid parameter, medium porosity, magnetic parameter, and inclination angle in both cases of strong concentration as well as weak concentration while it accelerates with the increase in micropolar parameter and Eckert number. Micro-rotation velocity seems to accelerate at the vicinity of stretching surface for β, K, γ, M, and Γ while it decelerates with the increase in Ec. Temperature rises with the increase in Eckert number, Biot number, inclination angle, magnetic parameter, and thermal convection parameter for strong and weak concentration. Skin friction coefficient increases with an increase in micropolar parameter, magnetic parameter, and medium porosity whereas it decreases with an increase in Casson fluid and thermal convection parameters. Nusselt number magnitude rises with an increase in K, Pr, and Bi, while it lessens with an increase in M, Ec, and γ.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Hamid Khan ◽  
Mubashir Qayyum ◽  
Omar Khan ◽  
Murtaza Ali

An unsteady squeezing flow of Casson fluid having magnetohydrodynamic (MHD) effect and passing through porous medium channel is modeled and investigated. Similarity transformations are used to convert the partial differential equations (PDEs) of non-Newtonian fluid to a highly nonlinear fourth-order ordinary differential equation (ODE). The obtained boundary value problem is solved analytically by Homotopy Perturbation Method (HPM) and numerically by explicit Runge-Kutta method of order 4. For validity purpose, we compare the analytical and numerical results which show excellent agreement. Furthermore, comprehensive graphical analysis has been made to investigate the effects of various fluid parameters on the velocity profile. Analysis shows that positive and negative squeeze numberSqhave opposite effect on the velocity profile. It is also observed that Casson parameterβshows opposite effect on the velocity profile in case of positive and negative squeeze numberSq. MHD parameterMgand permeability constantMphave similar effects on the velocity profile in case of positive and negative squeeze numbers. It is also seen that, in case of positive squeeze number, similar velocity profiles have been obtained forβ,Mg, andMp. Besides this, analysis of skin friction coefficient has also been presented. It is observed that squeeze number, MHD parameter, and permeability parameter have direct relationship while Casson parameter has inverse relationship with skin friction coefficient.


Author(s):  
Saeed Dinarvand ◽  
Reza Hosseini ◽  
Ioan Pop

Purpose – The current study is mainly motivated by the need to the development of the transient MHD mixed convection stagnation-point flow and heat transfer of an electrically conducting nanofluid over a vertical permeable stretching/shrinking sheet by means of Tiwari-Das nanofluid model. The purpose of this paper is to investigate the effects of the parameters governing the flow i.e. the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter on dimensionless velocity and temperature distributions, skin friction coefficient and local Nusselt number. Design/methodology/approach – The mathematical model has been formulated based on Tiwari-Das nanofluid model. Three different types of water-based nanofluid with copper, aluminum oxide (alumina) and titanium dioxide (titania) as nanoparticles are considered in this investigation. Using appropriate similarity variables, the governing equations are transformed into nonlinear ordinary differential equations in the dimensionless stream function, which is solved analytically by the well-know homotopy analysis method. The present simulations agree closely with the previous studies in the especial cases. Findings – The results show that by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter or reducing the velocity ratio parameter, the skin friction coefficient enhances. Furthermore, the local Nusselt number enhances with different rates by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter. Besides, the skin friction coefficient and the local Nusselt number are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids. Originality/value – Tiwari-Das nanofluid model has not been applied for the flow with these characteristics as mentioned in the paper. A comprehensive survey on boundary layer behavior has been presented. There are few studies regarding as analysis on thermal and hydrodynamics boundary layer. All plots presented in the paper are new and did not report in any other study. The effects of the parameters governing the flow on skin friction coefficient and local Nusselt number have been illustrated in the paper while there are some conflicts with previous published article that have been interpreted in details in the paper.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 202
Author(s):  
A. Mahdy ◽  
E. R. El-Zahar ◽  
A. M. Rashad ◽  
W. Saad ◽  
H. S. Al-Juaydi

In this study, we investigate the convective flow of a micropolar hybrid nanofluid through a vertical radiating permeable plate in a saturated porous medium. The impact of the presence or absence of the internal heat generation (IHG) in the medium is examined as well as the impacts of the magnetic field and thermal radiation. We apply similarity transformations to the non-dimensionalized equations and render them as a system of non-linear ODEs (Ordinary Differential Equations) subject to appropriate boundary conditions. This system of non-linear ODEs is solved by an adaptive mesh transformation Chebyshev differential quadrature method. The influence of the governing parameters on the temperature, microrotation and velocity is examined. The skin friction coefficient and the Nusselt number are tabulated. We determine that the skin friction coefficient and heat transport rate increase with the increment in the magnetic field. Moreover, the increment in the micropolarity and nanoparticle volume fraction enhances the skin friction coefficient and the Nusselt number. We also conclude that the IHG term improved the flow of the hybrid nanofluid. Finally, our results indicate that employing a hybrid nanofluid increases the heat transfer compared with that in pure water and a nanofluid.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
J. Bouslimi ◽  
M. Omri ◽  
R. A. Mohamed ◽  
K. H. Mahmoud ◽  
S. M. Abo-Dahab ◽  
...  

In this article, the effect of electromagnetic force with the effect of thermal radiation on the Williamson nanofluid on a stretching surface through a porous medium was studied considering the effect of both heat generation/absorption and Joule heating. On the other hand, the effect of Brownian motion and thermophoresis coefficients was considered. The system of nonlinear partial differential equations governing the study of fluid flow has transformed into a system of ordinary differential equations using similarity transformations and nondimensional variables which were subsequently solved numerically by using the Rung-Kutta fourth-order method with shooting technique. Moreover, the effect of the resulting physical parameters on the distributions of velocity, temperature, and concentration of nanoparticles has been studied by using graphical forms with an interest in providing physical meanings to each parameter. Finally, special diagrams were made to explain the study of the effect of some physical parameters on the skin friction coefficient and the local Nusselt number; these results led to reinforcement in the values of the skin friction coefficient for the increased values of the magnetic field and the Darcy number while the effect on the local Nusselt number by thermal radiation as well as the heat generation/absorption coefficients became negative.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Golam Mortuja Sarkar ◽  
Suman Sarkar ◽  
Bikash Sahoo

Purpose This paper aims to theoretically and numerically investigate the steady two-dimensional (2D) Hiemenz flow with heat transfer of Reiner-Rivlin fluid over a linearly stretching/shrinking sheet. Design/methodology/approach The Navier–Stokes equations are transformed into self-similar equations using appropriate similarity transformations and then solved numerically by using shooting technique. A simple but effective mathematical analysis has been used to prove the existence of a solution for stretching case (λ> 0). Moreover, an attempt has been laid to carry the asymptotic solution behavior for large stretching. The obtained asymptotic solutions are compared with direct numerical solutions, and the comparison is quite remarkable. Findings It is observed that the self-similar equations exhibit dual solutions within the range [λc, −1] of shrinking parameter λ, where λc is the turning point from where the dual solutions bifurcate. Unique solution is found for all stretching case (λ > 0). It is noticed that the effects of cross-viscous parameter L and shrinking parameter λ on velocity and thermal fields show opposite character in the dual solution branches. Thus, a linear temporal stability analysis is performed to determine the basic feasible solution. The stability analysis is based on the sign of the smallest eigenvalue, where positive or negative sign leading to a stable or unstable solution. The stability analysis reveals that the first solution is stable that describes the main flow. Increase in cross-viscous parameter L resulting in a significant increment in skin friction coefficient, local Nusselt number and dual solutions domain. Originality/value This work’s originality is to examine the combined effects of cross-viscous parameter and stretching/shrinking parameter on skin friction coefficient, local Nusselt number, velocity and temperature profiles of Hiemenz flow over a stretching/shrinking sheet. Although many studies on viscous fluid and nanofluid have been investigated in this field, there are still limited discoveries on non-Newtonian fluids. The obtained results can be used as a benchmark for future studies of higher-grade non-Newtonian flows with several physical aspects. All the generated results are claimed to be novel and have not been published elsewhere.


2009 ◽  
Vol 14 (3) ◽  
pp. 303-314 ◽  
Author(s):  
S. P. Anjali Devi ◽  
B. Ganga

This paper investigates the influence of both viscous and joules dissipation on the problem of magnetohydrodynamic flow past a stretching porous surface embedded in a porous medium. Analytic solutions of the resulting nonlinear non-homogeneous boundary value problem in the case when the plate stretches with a velocity varying linearly with distance, expressed in terms of confluent hypergeometric functions, are presented for the case of prescribed surface temperature. Numerical calculations have been carried out for various values of suction parameter, magnetic field, Prandtl number, Eckert number and Schmidt number. The results show that increases in magnetic parameter decrease both the dimensionless transverse velocity, longitudinal velocity and also the skin friction coefficient. Also, formation of thin boundary layer is observed for higher value of magnetic parameter.


Author(s):  
Rajesh Vemula ◽  
A J Chamkha ◽  
Mallesh M. P.

Purpose – The purpose of this paper is to focus on the numerical modelling of transient natural convection flow of an incompressible viscous nanofluid past an impulsively started semi-infinite vertical plate with variable surface temperature. Design/methodology/approach – The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. A robust, well-tested, Crank-Nicolson type of implicit finite-difference method, which is unconditionally stable and convergent, is used to solve the governing non-linear set of partial differential equations. Findings – The local and average values of the skin-friction coefficient (viscous drag) and the average Nusselt number (the rate of heat transfer) decreased, while the local Nusselt number increased for all nanofluids, namely, aluminium oxide-water, copper-water, titanium oxide-water and silver-water with an increase in the temperature exponent m. Selecting aluminium oxide as the dispersing nanoparticles leads to the maximum average Nusselt number (the rate of heat transfer), while choosing silver as the dispersing nanoparticles leads to the minimum local Nusselt number compared to the other nanofluids for all values of the temperature exponent m. Also, choosing silver as the dispersing nanoparticles leads to the minimum skin-friction coefficient (viscous drag), while selecting aluminium oxide as the dispersing nanoparticles leads to the maximum skin-friction coefficient (viscous drag) for all values of the temperature exponent m. Research limitations/implications – The Brinkman model for dynamic viscosity and Maxwell-Garnett model for thermal conductivity are employed. The governing boundary layer equations are written according to The Tiwari-Das nanofluid model. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. Practical implications – The present simulations are relevant to nanomaterials thermal flow processing in the chemical engineering and metallurgy industries. This study also provides an important benchmark for further simulations of nanofluid dynamic transport phenomena of relevance to materials processing, with alternative computational algorithms (e.g. finite element methods). Originality/value – This paper is relatively original and illustrates the influence of variable surface temperature on transient natural convection flow of a viscous incompressible nanofluid and heat transfer from an impulsively started semi-infinite vertical plate.


2021 ◽  
Vol 10 (2) ◽  
pp. 259-269
Author(s):  
M. Veera Krishna ◽  
N. Ameer Ahamad ◽  
Ali J. Chamkha

In the current investigative paper, the impact of Hall current on an unsteady magnetohydrodynamic liberated convection revolving flow of a nanofluid restricted with a uniform absorbent medium over an oscillatory moving vertical smooth plate with convective as well as diffusive frontier conditions has been reviewed. The non-dimensionalized governing differential equations by the appropriate frontier conditions are resolved by the perturbations technique. The impacts of the physical constants on the flow as well as the heat transfer features are displayed graphically and analyzed for Cu as well as Al2O3 nanoparticles. For the engineering industry, the skin friction coefficient, local Nusselt number, along with the Sherwood’s number are examined numerically in detail.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1175
Author(s):  
Nor Ain Azeany Mohd Nasir ◽  
Anuar Ishak ◽  
Ioan Pop

The magnetohydrodynamic (MHD) stagnation point flow over a shrinking or stretching flat sheet is investigated. The governing partial differential equations (PDEs) are reduced into a set of ordinary differential equations (ODEs) by a similarity transformation and are solved numerically with the help of MATLAB software. The numerical results obtained are for different values of the magnetic parameter M, heat generation parameter Q, Prandtl number Pr and reciprocal of magnetic Prandtl number ε. The influences of these parameters on the flow and heat transfer characteristics are investigated and shown in tables and graphs. Two solutions are found for a certain rate of the shrinking strength. The stability of the solutions in the long run is determined, and shows that only one of them is stable. It is found that the skin friction coefficient f ″ ( 0 ) and the local Nusselt number − θ ′ ( 0 ) decrease as the magnetic parameter M increases. Further, the local Nusselt number increases as the heat generation increases.


Sign in / Sign up

Export Citation Format

Share Document