An oscillation effect on MHD radiative Casson fluid flows in an asymmetric channel through group theoretical analysis

2020 ◽  
Vol 98 (1) ◽  
pp. 81-88
Author(s):  
Muhammad Nazim Tufail ◽  
Musharafa Saleem ◽  
Qasim Ali Chaudhry

The flow has been made by considering oscillation and radiation effects for the magnetohydrodynamic (MHD) Casson fluid model within an asymmetric wavy channel. Oscillation occurs during the flow by taking into account the pressure gradient across the ends of the channel. The governed mathematical statement is handled analytically by choosing the group theoretical method. The partial differential equations (PDEs) of the governed system are transformed into ordinary differential equations (ODEs) by calculating the symmetries. Further, the mathematical problem is concluded and the graphical results are shown for the following emerging parameters: Casson fluid parameter β, wavelength λ, oscillation parameter ω, Reynolds number Re, Hartmann number M, radiation parameter R, heat source–sink parameter Q, and Peclet number Pe. The magnitude of velocity profile f(η) increased with an increase in β, λ, Re, and K. With variations of H and ω, f(η) decreased. The temperature profile θ(η) increased when the values of Pe, Q, and R increased.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


2018 ◽  
Vol 388 ◽  
pp. 420-432
Author(s):  
Vinay Kumar Poorigaly Nanjundaswamy ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Patil Mallikarjun ◽  
Mohaddeseh Mousavi Nezhad ◽  
Giulio Lorenzini

The theoretical study of laminar boundary layer flows of a non-Newtonian fluid past a stretching sheet in an embedded porous medium in the presence of suction/injection is of significant importance in the crystal growing, geothermal, metallurgical, polymer extrusion and several other technological processes. Casson fluid model is one such fluid model used to characterize the behaviour of non-Newtonian fluids. The present article discusses the Casson fluid flow past a permeable stretching sheet in the presence of mass transpiration. The physical problem is modelled into a system of nonlinear partial differential equations which are analytically solved by transforming them into nonlinear ordinary differential equations with constant coefficient by means of similarity transformations. The analysis reveals the effect of Casson parameter on the velocity boundary. In fact, the increasing Casson parameter results in the suppression of velocity boundary. It is found that the skin friction coefficient decreases with the decreasing values of Casson parameter. The effects of Darcy drag force and the mass transpiration are also analyzed by means of various plots.


Author(s):  
A. Mahdy ◽  
A Chamkha

Purpose – The purpose of this paper is to discuss a combined similarity-numerical approach that is used to study the unsteady two-dimensional flow of a non-Newtonian nanofluid over a contracting cylinder using Buongiorno’s model and the Casson fluid model that is used to characterize the non-Newtonian fluid behavior. Design/methodology/approach – Similarity transformations are employed to transform the unsteady Navier-Stokes partial differential equations into a system of ordinary differential equations. The transformed equations are then solved numerically by means of the very robust symbolic computer algebra software MATLAB employing the routine bvpc45. Findings – The effect of increasing values of the Casson parameter is to suppress the velocity field (in absolute sense), the temperature and concentration decrease as Casson parameter increase. The heat and mass transfer rates decrease with the increase of unsteadiness parameters and Brownian motion parameter. In addition, they increase as the Casson parameter and the thermophoresis parameter increase. Originality/value – The problem is relatively original and represents a very important contribution to the field of non-Newtonian nanofluids.


2020 ◽  
Vol 9 (1) ◽  
pp. 398-411 ◽  
Author(s):  
Abayomi S. Oke ◽  
Winifred N. Mutuku ◽  
Mark Kimathi ◽  
Isaac L. Animasaun

AbstractCasson fluid model is the most accurate mathematical expression for investigating the dynamics of fluids with non-zero plastic dynamic viscosity like that of blood. Despite huge number of published articles on the transport phenomenon, there is no report on the increasing effects of the Coriolis force. This report presents the significance of increasing not only the Coriolis force and reducing plastic dynamic viscosity, but also the Prandtl number and buoyancy forces on the motion of non-Newtonian Casson fluid over the rotating non-uniform surface. The relevant body forces are derived and incorporated into the Navier-Stokes equations to obtain appropriate equations for the flow of Newtonian Casson fluid under the action of Coriolis force. The governing equations are non-dimensionalized using Blasius similarity variables to reduce the nonlinear partial differential equations to nonlinear ordinary differential equations. The resulting system of nonlinear ordinary differential equations is solved using the Runge-Kutta-Gills method with the Shooting technique, and the results depicted graphically. An increase in Coriolis force and non-Newtonian parameter decreases the velocity profile in the x-direction, causes a dual effect on the shear stress, increases the temperature profiles, and increases the velocity profile in the z-direction.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


Biorheology ◽  
1975 ◽  
Vol 12 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Walter P. Walawender ◽  
Te Yu Chen ◽  
David F. Cala

Author(s):  
RADHAKRISHNAN BHEEMAN ◽  
Tamilarasi Mathivanan

This research is about the transfer of heat of a generalized fractional Casson fluid on an unsteady boundary layer which is passing through an infinite oscillating plate, in vertical direction combined with the Newtonian heating. The results are obtained by using modified Riemann-Liouville fractional derivative. The present fluid model, starts with the governing equations which are then converted to a system of partial differential equations(linear) by using some suitable non-dimensional variables. Using the method of integral balance and the Laplace transform technique, an analytical solution is obtained. The velocity and temperature expressions are derived and the effects of modelling parameters re shown in tables and graphs to validate the obtained theoretical results.


Sign in / Sign up

Export Citation Format

Share Document