Na+–H+ exchanger inhibitor prevents early death in hereditary cardiomyopathy

2015 ◽  
Vol 93 (11) ◽  
pp. 923-934 ◽  
Author(s):  
Ghassan Bkaily ◽  
Mirna Chahine ◽  
Johny Al-Khoury ◽  
Levon Avedanian ◽  
Norbert Beier ◽  
...  

Using the UM-X7.1 hereditary cardiomyopathic and muscular dystrophy hamsters (HCMH), we tested the effects of lifelong preventive or curative treatments during the heart failure phase with the NHE-1 inhibitor EMD 87580 (EMD) or with the angiotensin-converting enzyme inhibitor cilazapril on the intracellular Na+ and Ca2+ overloads, elevated level of NHE-1, necrosis, hypertrophy, heart failure, and early death. Our results showed that 310-day pretreatment of 30-day-old HCMHs with EMD significantly prevented cardiac necrosis, cardiomyocyte hypertrophy, and reduced the heart to body mass ratio. This treatment significantly prevented Na+ and Ca2+ overloads and the increase in NHE-1 protein level observed in HCMHs. Importantly, this lifelong preventive treatment significantly decreased the levels of creatine kinase and prevented early death of HCMHs. Curative treatment of hypertrophic 275-day-old HCMHs for 85 days with EMD significantly prevented hypertrophy and early death of HCMHs. However, treatments with cilazapril did not have any significant effects on the cardiac parameters studied or on early death of HCMHs. Our results suggest that the increase in the NHE-1 level and the consequent Na+ and Ca2+ overloads are implicated in the pathological process leading to heart failure and early death in HCMHs, and treatment with the NHE-1 inhibitor is promising for preventing early death in hereditary cardiomyopathy.

2020 ◽  
Vol 4 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Moeko Suzuki ◽  
Haruhiko Higashi ◽  
Shuntaro Ikeda ◽  
Osamu Yamaguchi

Abstract Background For relief of cold symptoms, methylephedrine is considered to be safer than ephedrine, particularly when used at the predetermined dose. It is often present in various over-the-counter (OTC) drugs for cold, including paediatric cough syrups. Case summary A 52-year-old man presented with worsening dyspnoea and anorexia for 2 weeks. He was a night shift worker and had been habitually taking large doses of methylephedrine-containing paediatric cough syrup for 20 years for sleep averting. On admission, his chest X-ray revealed pulmonary congestion and electrocardiogram showed sinus tachycardia with left-axis deviation. Echocardiography revealed diffuse hypokinesis with a reduced ejection fraction (EF) of 25%. The B-type natriuretic peptide level was elevated to 1092 ng/L. Even after treatment with low-dose dobutamine and furosemide in intensive care unit, right-heart catheterization demonstrated a ‘wet and cold’ profile. Coronary angiography revealed normal coronary arteries. Pathological examination by endomyocardial biopsy revealed cardiomyocyte hypertrophy with moderate interstitial and replacement fibrosis. In addition, cardiac magnetic resonance imaging revealed diffuse hypokinesis with mid-wall late gadolinium enhancement, which suggested fibrosis. Discontinuation of the cough syrup and optimal medical treatment with an angiotensin-converting enzyme inhibitor and a β blocker resulted in improvement in the heart failure symptoms to New York Class Association Class II. The EF also improved to 50% at 4 months after discharge. Discussion Methylephedrine is considered to have adrenergic effects; it has milder side effects on the cardiovascular system than ephedrine. However, the long-lasting excessive intake of methylephedrine, even through OTC paediatric cough syrups, has the potential to cause heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Umei ◽  
H Akazawa ◽  
A Saga-Kamo ◽  
H Yagi ◽  
Q Liu ◽  
...  

Abstract Introduction Short-chain fatty acids are one of the gut microbial metabolites that may influence host physiology. We previously reported that gut dysbiosis was associated with heart failure, and that the proportions of butyrate-producing bacteria diminished prominently in the gut of patients with heart failure. Purpose We investigated the molecular mechanism of butyrate and investigated the protective mechanism against heart failure. Methods We searched for G protein-coupled receptors for short-chain fatty acids using single-cell transcriptome analysis of cardiomyocytes and non-cardiomyocytes isolated from murine hearts. In addition, we examined the effects of butyrate on endothelin-1 (ET1) or isoproterenol-induced hypertrophic responses and histone deacetylase (HDAC) activities in cultured neonatal rat cardiomyocytes. Results Single-cell transcriptome analysis and co-expression network analysis revealed that G protein-coupled receptors for short-chain fatty acid receptors were not expressed in cardiomyocytes and that Olfr78 was expressed in vascular smooth muscle cells in the heart. Treatment with butyrate inhibited ET1-induced hypertrophic growth and up-regulation of the genes such as Nppa, Acta1, and Myh7 in cultured rat neonatal cardiomyocytes. Moreover, butyrate increased the acetylation levels of histone H3, indicating that butyrate has an inhibitory effect on HDAC in cardiomyocytes. In addition, treatment with butyrate caused up-regulation of Inpp5f, encoding inositol polyphosphate-5-phosphatase f, which was associated with a significant decrease in the phosphorylation levels of Akt. These results suggest that butyrate may act as HDAC inhibitor to increase Inpp5f gene expression, leading to the activation of Akt-glycogen synthase kinase 3beta (Gsk3beta) pathway, and thereby protect against hypertrophic responses. Conclusion There was no known GPCR for short-chain fatty acid expressed in cardiomyocytes. However, butyrate suppressed cardiomyocyte hypertrophy through epigenetic modification of gene expression. Our results may uncover a potential role of the dysbiosis of intestinal microbiota in the pathogenesis of cardiac hypertrophy and failure. Funding Acknowledgement Type of funding source: None


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 53
Author(s):  
Jung Joo Yoon ◽  
Chan Ok Son ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Yun Jung Lee ◽  
...  

Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1–1 μM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Findlay ◽  
J.H Gill ◽  
R Plummer ◽  
C.J Plummer

Abstract   Anthracycline chemotherapy remains a key component of cancer treatment regimens in both paediatric and adult patients. A significant issue with their use is the development of anthracycline-induced cardiotoxicity (AIC), with subclinical AIC and clinical heart failure observed in 13.8% and 3.1% of patients, respectively. The major clinical complication of AIC is the development of late-onset cardiotoxicity, occurring several years after drug administration, presenting as life-threatening heart failure (HF). Determining the relationship between subclinical AIC and late-onset HF, strategies for mitigation of AIC, and impacts upon the cancer survivor population remains a complex challenge. Administration of drugs targeting the angiotensin system, specifically angiotensin converting enzyme inhibitors (ACEi), have been reported to reduce AIC in the clinic. Whilst the therapeutic effect of ACEi in management of left ventricular systolic dysfunction and consequent HF is principally through optimisation of cardiac haemodynamics, the mechanism involved with mitigation of late-onset AIC several years after anthracycline exposure are currently unknown. Using a variety of human cardiomyocyte in vitro models we have previously demonstrated induction of cardiomyocyte hypertrophy by angiotensin II and anthracyclines. Importantly, selective blockade of the angiotensin II receptor 1 (ATR1) on cardiomyocytes mitigated the anthracycline-induced hypertrophic response, implicating synergism between AIC and angiotensin signalling in cardiomyocytes. Adult human ventricular cardiac myocyte AC10 cell-line were treated in vitro with a range of clinically relevant doxorubicin doses for clinically appropriate durations, with AT1 receptor gene expression evaluated using semi-quantitative PCR. Our results confirm a positive correlation between clinically-relevant concentration of doxorubicin and induction of genetic expression of ATR1 in AC10 cells, with up to 200% increases in ATR1 expression observed. Maximal doxorubicin-induced gene expression being observed at 8 and 24-hours, respectively. These preliminary results agreeing with clinical exposure parameters for this drug with protein expression studies being optimised to support these gene expression study results. Our preliminary studies also imply patients developing AIC carry a deleted polymorphism within intron 16 of the ACE gene and increased systemic levels of the ACE product angiotensin II, both with a known association to hypertrophic cardiomyopathy. Taken together, these data support our mechanistic hypothesis that a relationship exists between AIC and modulation of the angiotensin signalling pathway in cardiomyocytes, involving structural cellular changes and asymptomatic cardiac hypertrophy. An elevation in angiotensin II levels, potentially through polymorphisms in ACE, could thereby exacerbate anthracycline-induced hypertrophy and promote the development of late-onset anthracycline-induced HF. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): Cancer Research UK funded PhD


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kana Shimizu ◽  
Masafumi Funamoto ◽  
Yoichi Sunagawa ◽  
Yasufumi Katanasaka ◽  
Yusuke Miyazaki ◽  
...  

Purpose: The cost of new drug development is increasing year by year, and drug repositioning is being used as a strategy to develop new treatments at low-cost. We used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy, and identified as a candidate the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT 2A ) receptor antagonist. In this study, we examined the effect of sarpogrelate on cultured cardiomyocyte hypertrophy and development of heart failure. Methods & Results: First, primary cultured cardiomyocytes were treated with 1 μM sarpogrelate and then stimulated with various hypertrophic stimuli (30 μM phenylephrine (PE), 0.1 μM angiotensin II and 0.1 μM endothelin 1). The results of immunofluorescence staining with anti-MHC antibody showed that sarpogrelate significantly suppressed cardiomyocyte hypertrophy induced by each stimulus. Western blotting and qPCR analysis showed that the mRNA and protein levels of 5-HT 2A receptor did not change by PE, and sarpogrelate significantly suppressed PE-induced phosphorylation of ERK1/2 and GATA4. Next, C57BL/6j male mice were subjected to a transverse aortic constriction (TAC) and sham operation. One day after the operation, the mice were randomly divided into 3 groups: sarpogrelate at 1 mg/kg or 5 mg/kg, and vehicle as a control. Daily oral administration was repeated for 8 weeks. Echocardiographic analysis showed that 5 mg/kg sarpogrelate significantly prevented a TAC-induced increase in posterior left ventricular wall thickness and a decrease in fractional shortening at 8 weeks after the operation. Five mg/kg sarpogrelate also suppressed TAC-induced increase in HW/BW ratio, cross-sectional areas, perivascular fibrosis, and mRNA levels of ANF and BNP. Moreover, the western blotting analysis showed that 5 mg/kg sarpogrelate significantly suppressed TAC-induced phosphorylation of ERK1/2. Conclusions: These results indicate that sarpogrelate significantly suppresses cardiomyocyte hypertrophy and the development of heart failure via at least, in part, by inhibition of ERK1/2-GATA4 pathway. These findings suggest that sarpogrelate may be an effective agent for heart failure therapy.


Sign in / Sign up

Export Citation Format

Share Document