Long-term cropping and fertilization influences soil organic carbon, soil water repellency, and soil hydrophobicity

2020 ◽  
Vol 100 (3) ◽  
pp. 234-244
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
X.M. Yang ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
...  

Long-term (58 yr) cropping and fertilization effects on soil water repellency were determined for a clay loam soil in southwestern Ontario, Canada by measuring soil organic carbon (SOC), soil water repellency index (RI), and soil hydrophobicity (SH). The 12 treatments (non-replicated) included fertilized and non-fertilized legume-based crop rotation (ROT) with four phases (corn–oat–alfalfa–alfalfa), continuous corn (CC), and continuous Kentucky bluegrass (KBG). We hypothesized that SOC, RI, and SH would be greater for each phase of the ROT versus CC, KBG versus CC and ROT, and fertilized versus non-fertilized treatments. Surface (0–10 cm) soil samples were collected in the spring of 2017. Laboratory measurements were conducted to determine SOC, RI (ratio of soil sorptivity to ethanol and water), and SH (ratio of hydrophobic CH– to hydrophilic CO– functional groups). Mean SOC and SH were greater (P ≤ 0.05) for each phase of the ROT versus CC (33% to 2.4 times), KBG versus CC (3.2–6 times) and each phase of ROT (2.2–2.8 times), and fertilized versus non-fertilized rotation oats and KBG (15%–30%). Mean RI was greater for KBG versus CC (4.8 times) and KBG versus each phase of the ROT (3.0–5.5 times) under fertilization only, greater for fertilized versus non-fertilized KBG (6.8 times), but similar for each phase of ROT versus CC. In general, legume-based rotations, perennial grass, and fertilizer enhanced SOC and SH, and to a lesser extent soil RI.

2021 ◽  
pp. 1-13
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
X. Hao ◽  
X.M. Yang ◽  
C.F. Drury ◽  
...  

Continuous or discontinued manure applications to agricultural soils may impact soil organic carbon (SOC) and water balances because of manure carbon inputs and the potential for manure-induced soil hydrophobicity (SH) and soil water repellency (SWR). A laboratory study was conducted using a long-term (44 yr) field experiment on a clay loam soil to determine the effect of application rate of feedlot manure under dryland (0, 30, 60, and 120 Mg·ha−1 wet weight) and irrigation (0, 60, 120, and 180 Mg·ha−1) on SOC, SH, and SWR. In addition, we compared the effect of 44 yr of continuous annual manure applications (C44) to legacy treatments which had discontinued applications for 14 (D14) or 30 yr (D30). Laboratory measurements were conducted on air-dried and sieved (<2 mm) soil to determine SOC, SH using Fourier transform infrared spectroscopy, and SWR using the repellency index (RI) method. Mean RI values for all treatments ranged from 2.20 to 13.0, indicating subcritical (RI > 1.95) SWR. Manure application rate had a significant (P ≤ 0.05) and positive effect on SOC and SH, and both followed an exponential model. In contrast, RI had a negative response to the application rate under dryland and had no response under irrigation. Overall, positive responses of SOC and SH to application rate supported our hypothesis, but it was not supported for RI. The hypothesis of greater SOC, SH, and RI for continuous versus discontinued treatments was also supported for SOC and SH but not for RI.


2019 ◽  
Vol 99 (3) ◽  
pp. 334-344 ◽  
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
B.H. Ellert ◽  
X.M. Yang ◽  
C.F. Drury ◽  
...  

Crop residues and N fertilizer under no-till may increase soil water repellency (SWR) and soil hydrophobicity, but few studies have examined these two treatment factors and their interaction. A laboratory study was conducted using a long-term (since 1999) field experiment on a clay loam soil to determine the effect of three crop residues and two N fertilizer levels on SWR and soil hydrophobicity under no-till within the Dark Brown soil zone of the semi-arid Canadian prairies. The three residue treatments were residues removed from soil (Rx0), residues returned to soil (Rx1), and residues supplemented to soil (Rx2). The two fertilizer N treatments were 0 (N0) and 45 kg N ha−1 (N1). Surface (0–10 cm) soil samples were taken in the spring of 2017 after 17 yr. Laboratory measurements were conducted on air-dried and sieved (<2 mm) soil to determine SWR using the repellency index method (RI), soil organic C, hydrophobic CH and hydrophilic CO functional groups, and soil hydrophobicity (CH/CO ratio). Mean RI values ranged from 2.19 to 2.75, indicating subcritical (RI > 1.95) SWR. Similar (P > 0.05) RI values were found for the three residue and two N fertilizer treatments, but the trend was for greater RI with increased residue addition (by 12%–26%) and N fertilizer (by 8%). Soil hydrophobicity was significantly greater by 47%–82% for straw returned or supplemented than straw removed treatments, and by 33% for fertilized than unfertilized treatments. Overall, greater residues and N fertilizer had no effect on SWR, but significantly increased soil hydrophobicity.


Geoderma ◽  
2021 ◽  
Vol 401 ◽  
pp. 115312
Author(s):  
Zihuan Fu ◽  
Wei Hu ◽  
Michael H. Beare ◽  
Karin Müller ◽  
Dirk Wallace ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2577
Author(s):  
Enzhan Song ◽  
Keith W. Goyne ◽  
Robert J. Kremer ◽  
Stephen H. Anderson ◽  
Xi Xiong

Repeated application of soil surfactants, or wetting agents, is a common practice for alleviating soil water repellency associated with soil organic coatings. However, wetting agents are organic compounds that may also coat soil particle surfaces and reduce wettability. For this experiment, hydrophobic sands from the field and fresh, wettable sands were collected and treated with either a polyoxyalkylene polymer (PoAP) or alkyl block polymer (ABP) wetting agent, or water only treatments served as a control. Following repeated treatment application and sequential washings, dissolved and particulate organic carbon (OC) were detected in the leachates of both sand systems. The total amount of OC recovered in leachates was 88% or less than the OC introduced by the wetting agents, indicating sorption of wetting agent monomers to soil particle surfaces regardless of soil hydrophobicity status. While ABP treatment did not alter solid phase organic carbon (SOC) in the sands studied, PoAP application increased SOC by 16% and 45% which was visible in scanning electronic microscopy images, for hydrophobic and wettable sands, respectively. PoAP application also increased the hydrophobicity of both sands that were studied. In contrast, ABP treatment increased the wettability of hydrophobic sand. Our results provide strong evidence that certain wetting agents may increase soil hydrophobicity and exacerbate wettability challenges if used repeatedly over time.


Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


2014 ◽  
Vol 2 ◽  
Author(s):  
Alexis Hernández ◽  
Natalia Rodríguez ◽  
Marcelino del Arco ◽  
Carmen Dolores Arbelo ◽  
Jesús Notario del Pino ◽  
...  

Forest fires modify the soil environment, often triggering severe soil degradation. In this paper, we studied the impact of a large northern Tenerife Canariy pine forest wildfire on a set of relevant soil properties, focusing on their evolution in time and relationship with soil water repellency. To do this, soils were sampled at four sites (burned and non-burned) and several soil physical and chemical parameters were measured. The results show significant variations for soil pH, electric conductivity (CE<sub>1:5</sub>), and NH<sub>4</sub><sup>+</sup>-N between burned and non-burned samples, whereas non-significant increases were found in burned soils for oxidizable carbon (C<sub>ox</sub>), total nitrogen (N<sub>tot</sub>) , Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>, and soil hydrophobicity. The differences caused by the fire were no longer evident one year later. Furthermore, in one sampling site (Vitric Leptosols under low pine forest with a mixed heath/beech tree understory) a wide variation in the content of C<sub>ox</sub> and N<sub>tot</sub> and high water repellency was observed relative to the other sites. These differences can be attributed to the composition of the understory vegetation. Significant correlations between soil hydrophobicity with CE<sub>1:5</sub>, aggregate stability and the contents of C<sub>ox</sub>, N<sub>tot</sub>, NH<sub>4</sub><sup>+</sup>-N, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup> were found.


1999 ◽  
Vol 79 (2) ◽  
pp. 367-380 ◽  
Author(s):  
Julie L. Roy ◽  
William B. McGill ◽  
Marvin D. Rawluk

Some soils develop severe water repellency several years or decades following oil contamination. We previously reported on the characteristics of three such soils. Here we report on the characteristics of putative water-repellent substances in them. We examined the effectiveness of various polar, nonpolar and amphiphilic solvents for removal of water-repellent substances in three nonwettable soils. Only the amphiphilic solvent mixture isopropanol/14.8 M ammonia (7:3, vol/vol) (IPA/NH4OH) completely eliminated soil water repellency in all three soils. We thus define putative water-repellent substances as those substances whose removal from soil by IPA/NH4OH removes water repellency. High-resolution CPMAS 13C-NMR spectroscopy and thermal desorption followed by conventional gas chromatography/mass spectroscopy with electron impact ionization (GC/EI/MS) and GC/MS with chemical ionization (GC/CI/MS) were used to characterize extracted putative water-repellent substances. We conclude that: (i) the identified representatives of these substances consist mostly of homologous series of long-chain and polycyclic aliphatic organic compounds; namely, n-fatty acids, n-alkanes, and cycloalkanes, and that (ii) they are of petroleum origin rather than plant or microbial origin. Key words: Soil hydrophobicity, petroleum hydrocarbons, soil water repellency, amphiphilic solvents, crude oil, nonwettable soil


Soil Science ◽  
2010 ◽  
Vol 175 (10) ◽  
pp. 461-468 ◽  
Author(s):  
Anurudda Kumara Karunarathna ◽  
Ken Kawamoto ◽  
Per Moldrup ◽  
Lis Wollesen de Jonge ◽  
Toshiko Komatsu

Sign in / Sign up

Export Citation Format

Share Document