The depth of edge influence among insectivorous bats at forest–field interfaces

2013 ◽  
Vol 91 (5) ◽  
pp. 287-292 ◽  
Author(s):  
M.K. Jantzen ◽  
M.B. Fenton

Species-specific variations in wing morphology and echolocation call characteristics often define which of three structural habitat types (open, cluttered, and edge) different bat species most frequently and efficiently use for foraging. Although edges are recognized as important habitats for commuting and foraging bats, no study to date has examined the depth of edge influence (DEI), the extent of quantitative changes in activity with distance from an edge, for any bat species. We focused our study on five species: northern long-eared bat, Myotis septentrionalis (Trouessart, 1897); hoary bat, Lasiurus cinereus (Beauvois, 1796); little brown bat, Myotis lucifugus (LeConte, 1831); silver-haired bat, Lasionycteris noctivagans (LeConte, 1831); big brown bat, Eptesicus fuscus (Beauvois, 1796). We predicted DEI would vary with species-specific differences in wing morphology and echolocation call characteristics. From June to August in 2010 and 2011, we passively recorded echolocation calls three to four times per month at eight sites in eastern Ontario, Canada. We found that species’ activity was highest at the edge, regardless of wing morphology and echolocation call characteristics. The DEI for all species was approximately 40 m into both forests and fields. Understanding the effects of DEI on bats will enable more effective acoustic monitoring in future studies and may provide crucial information for management decisions.

2004 ◽  
Vol 82 (12) ◽  
pp. 1854-1863 ◽  
Author(s):  
Samantha Stoffberg ◽  
David S Jacobs

On the basis of its external morphology, Myotis tricolor (Temminck, 1832) should be able to both aerial-feed and glean. Furthermore, this bat is known to use broadband calls of short duration, reinforcing the prediction that it gleans. However, results from this study indicate that M. tricolor does not commonly glean. This conclusion was reached after studying the foraging behaviour of M. tricolor in a flight room. We presented M. tricolor with mealworms, moths, mole crickets, beetles, and cicadas in a variety of ways that required either gleaning and (or) aerial feeding. Although M. tricolor readily took tethered prey, it did not take any of the variety of insects presented to it in a manner that required gleaning. We therefore compared its wing morphology and echolocation calls with those of several known gleaners, Nycteris thebaica E. Geoffroy, 1818, Myotis lucifugus (Le Conte, 1831), and Myotis septentrionalis (Trouessart, 1897), and an aerial forager, Neoromicia capensis (A. Smith, 1829). In a discriminant analysis wing-tip shape was the only variable to provide some degree of discrimination between species, with M. tricolor having more pointed wing tips than the known gleaners. Discriminant analysis of echolocation-call parameters grouped M. tricolor with the other Myotis species and separated it from N. capensis and N. thebaica. However, M. tricolor did not use harmonics as did the other Myotis species. The apparent failure of M. tricolor to glean might therefore be due to its relatively pointed wings and narrow-bandwidth echolocation calls, owing to the absence of harmonics in its calls.


2016 ◽  
Vol 94 (12) ◽  
pp. 829-836 ◽  
Author(s):  
B.J. Klüg-Baerwald ◽  
L.E. Gower ◽  
C.L. Lausen ◽  
R.M. Brigham

Winter activity of bats is common, yet poorly understood. Other studies suggest a relationship between winter activity and ambient temperature, particularly temperature at sunset. We recorded echolocation calls to determine correlates of hourly bat activity in Dinosaur Provincial Park, Alberta, Canada. We documented bat activity in temperatures as low as −10.4 °C. We observed big brown bats (Eptesicus fuscus (Palisot de Beauvois, 1796)) flying at colder temperatures than species of Myotis bats (genus Myotis Kaup, 1829). We show that temperature and wind are important predictors of winter activity by E. fuscus and Myotis, and that Myotis may also use changes in barometric pressure to cue activity. In the absence of foraging opportunity, we suggest these environmental factors relate to heat loss and thus the energetic cost of flight. To understand the energetic consequences of bat flight in cold temperatures, we estimated energy expenditure during winter flights of E. fuscus and little brown myotis (Myotis lucifugus (Le Conte, 1831)) using species-specific parameters. We estimated that winter flight uses considerable fat stores and that flight thermogenesis could mitigate energetic costs by 20% or more. We also show that temperature-dependent interspecific differences in winter activity likely stem from differences between species in heat loss and potential for activity–thermoregulatory heat substitution.


The Auk ◽  
2005 ◽  
Vol 122 (3) ◽  
pp. 872-886 ◽  
Author(s):  
F. Gary Stiles ◽  
Douglas L. Altshuler ◽  
Robert Dudley

Abstract We explored the relationship between wing morphology and flight behavior with respect to sex and age in five species of North American hummingbirds. We first measured the length, chord or “width,“ and area of entire hummingbird wing planforms. We then calculated additional parameters of wing shape and size, including aspect and shape ratios, degree of taper or “pointedness,“ wing loading, and wing disc loading (WDL). Wings of adult males are not only shorter but also more narrow and tapered than those of adult or immature females; immature males have larger wings and lower WDL, more like those of females. A proposed relationship between WDL and territorial behavior and dominance is not supported, given that adult and immature males show similar feeding territoriality outside the breeding season but females rarely do. The more extreme and divergent wings of adult males probably reflect sexual selection in connection with aerial displays that include species-specific sound effects given during the breeding season. North American species are unusual among hummingbirds in showing reversed sexual size-dimorphism (males smaller, with relatively shorter wings), a feature shared with some other small hummingbirds, notably the “Pygmornis“ hermits. Attempts to explain hummingbird foraging and territorial behavior on the basis of differences in WDL have failed because many aspects of wing morphology, physiology, and flight behavior were not taken into account. Several wing parameters appear more related to other modes of flight than to strategies of nectar exploitation, and the morphology of any given wing represents a compromise between the often conflicting aerodynamic demands of different flight modes. Understanding hummingbird flight will require broad comparative studies of wing morphology and wingbeat kinematics in relation to flight behavior, and new theoretical models and experimental data will be needed to elucidate physiological and aerodynamic mechanisms underlying forward flight and maneuvering. Morfología Alar y Comportamiento de Vuelo de Unas Especies de Colibríes de Norteamérica


1994 ◽  
Vol 72 (5) ◽  
pp. 791-794 ◽  
Author(s):  
Lena N. Measures

One hundred and sixty-nine bats belonging to 6 different species and collected from 4 ecological zones (aspen parkland, boreal forest, grassland, and montane) in Alberta, Canada, during 1988 and 1989 were examined for helminths. Forty bats were infected with the stomach nematode Longibucca lasiura McIntosh and Chitwood, 1934. Sample size, prevalence, and mean intensity (with range in parentheses) of L. lasiura for the 6 species of bat were as follows: Myotis lucifugus, N = 130, 27%, 39 (1–121); Myotis ciliolabrum, N = 10, 10%, 1; Eptesicus fuscus, N = 6, 33%, 12 (2–22); Lasionycteris noctivagans, N = 2, 100%, 22 (5–39). Myotis evotis (N = 9) and Lasiurus cinereus (N = 3) were not infected. Longibucca lasiura was found in bats from all ecological zones except the boreal forest. This parasite was found in bats active during summer (June to August) and in hibernating M. lucifugus collected in September and April.


1988 ◽  
Vol 66 (9) ◽  
pp. 1982-1985 ◽  
Author(s):  
Catherine E. Koehler ◽  
Robert M. R. Barclay

We examined calls produced by the solitary bat Lasiurus cinereus during mother–young interactions and considered the potential for vocal signatures in the calls of the young. Families of bats were observed in the field at Delta Marsh, Manitoba, and vocalizations were recorded using high-speed ultrasonic recording equipment. Adult female bats and young vocalize primarily during reunions. Variation in duration and maximum and minimum frequency of the calls of young was calculated. The degree of call variation within L. cinereus family units was relatively high and calls produced by different young could not be differentiated. These observations suggest that a vocal signature, which is present in some colonial species of bats such as Myotis lucifugus and which allows auditory discrimination between calling young, is less likely to occur in L. cinereus.


2018 ◽  
Vol 96 (3) ◽  
pp. 261-268 ◽  
Author(s):  
L.A. Kaupas ◽  
R.M.R. Barclay

Intraspecific variation in diet has been observed in many species, including the geographically widespread little brown bat (Myotis lucifugus (Le Conte, 1831)). Spider consumption by M. lucifugus is more common in northern regions of their distribution, possibly due to reduced availability of aerial prey during low temperatures. However, in previously studied northern regions, M. lucifugus was the only bat species captured. The purpose of our study was to examine whether there is overlap in the diet and morphology of M. lucifugus and the northern long-eared bat (Myotis septentrionalis (Trouessart, 1897)), a species that commonly gleans prey, in the Northwest Territories, Canada. There were significant differences in the dietary composition and wing morphology of the two species, suggesting partitioning of resources. Both species consumed spiders, although unlike M. septentrionalis, the probability of M. lucifugus consuming spiders was significantly greater at low temperatures. Myotis lucifugus demonstrated a different pattern of spider consumption than in other northern regions where it consumes spiders throughout the summer, suggesting the possibility of resource competition where M. lucifugus overlaps with M. septentrionalis. Further research is needed to determine whether arthropods are seasonally limiting at high latitudes and to examine how these species capture nonaerial prey, including spiders.


2015 ◽  
Author(s):  
Xiaoyu Zhuo ◽  
Cedric Feschotte

Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.


2019 ◽  
Author(s):  
Meghan Ange-Stark ◽  
Tina L. Cheng ◽  
Joseph R. Hoyt ◽  
Kate E. Langwig ◽  
Katy L. Parise ◽  
...  

AbstractThe skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species (Myotis lucifugus,Eptesicus fuscus, andPerimyotis subflavus) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen,Pseudogymnoascus destructans. We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and ITS amplicon approach. We found that forM. lucifugus, a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower whenP. destructansis present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected withP. destructanscompared to uninfected bats. However, skin bacterial diversity was not lower inE. fuscusorP. subflavuswhenP. destructanswas present, despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence ofP. destructansfor any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of WNS inM. lucifugus, but not for other bat species impacted by white-nose syndrome.


2020 ◽  
Author(s):  
Theresa Schabacker ◽  
Oliver Lindecke ◽  
Sofia Rizzi ◽  
Lara Marggraf ◽  
Gunārs Pētersons ◽  
...  

AbstractIntegrating information on species-specific sensory perception together with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent animal model to investigate intra-specific variation in environmental cue sampling. Here, we developed anin situroost-like novel environment assay for tree-cave roosting bats. We repeatedly tested 52 individuals of the migratory bat species,Pipistrellus nathusii, across 24 hours, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intra-specific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity given their spatial activity, a behavioral response we term ‘acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment.


2017 ◽  
Vol 8 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Joseph L. Pettit ◽  
Joy M. O'Keefe

Abstract White-nose syndrome (WNS) is an emerging fungal disease suspected to have infected Indiana caves in the winter of 2010–2011. This disease places energetic strains on cave-hibernating bats by forcing them to wake and use energy reserves. It has caused >5.5 million bat deaths across eastern North America, and may be the driving force for extinction of certain bat species. White-nose syndrome infection can be identified in hibernacula, but it may be difficult to determine whether bats in a particular area are affected if no known hibernacula exist. Thus, our aim was to use long-term monitoring data to examine changes in a summer population away from hibernacula that may be attributable to WNS effects during winter. We used capture data from a long-term bat-monitoring project in central Indiana with data from 10 repeatedly netted sites consistent across all reproductive periods. We modeled capture data by WNS exposure probability to assess changes in relative abundance of common species and reproductive classes as WNS exposure probability increases. We base exposure probability on a cokriging spatial model that interpolated WNS infection from hibernaculum survey data. The little brown bat Myotis lucifugus, the Indiana bat M. sodalis, and the tri-colored bat Perimyotis subflavus suffered 12.5–79.6% declines; whereas, the big brown bat Eptesicus fuscus, the eastern red bat Lasiurus borealis, and the evening bat Nycticeius humeralis showed 11.5–50.5% increases. We caught more nonreproductive adult females and postlactating females when WNS exposure probabilities were high, suggesting that WNS is influencing reproductive success of affected species. We conclude that, in Indiana, WNS is causing species-specific declines and may have caused the local extinction of M. lucifugus. Furthermore, WNS-affected species appear to be losing pups or forgoing pregnancy. Ongoing long-term monitoring studies, especially those focusing on reproductive success, are needed to measure the ultimate impacts of WNS.


Sign in / Sign up

Export Citation Format

Share Document