On the possibility of anisotropic heat flow in the inner core

2001 ◽  
Vol 38 (6) ◽  
pp. 975-982 ◽  
Author(s):  
R A Secco ◽  
P S Balog

We consider the possibility of anisotropic heat flow in the inner core by examining the potential for anisotropic thermal conductivity of hexagonal close-packed (hcp-)Fe. Because hcp-Fe exists only at pressures above 13 GPa at room temperature, we investigate thermal conductivity anisotropy in analog material Gd by measuring the electrical conductivity and applying the Wiedemann–Franz Law to determine thermal conductivity (k). The electrical conductivity anisotropy of Gd was measured at pressures up to 1.4 GPa and temperatures up to 873 K in the hcp phase range. At elevated pressure, the variation with temperature of anisotropic thermal conductivity of Gd single crystal resembles the anisotropic behavior at high temperature and 1 atm observed in earlier work. The temperature range of anisotropy of thermal conductivity of Gd, where kc > ka, is extended by pressure, but the anisotropy disappears before the high temperature hcp[Formula: see text]bcc (body-centered cubic) transformation. Our results on hcp-Gd lead us to raise the question of the possibility of hcp-Fe exhibiting anisotropy of thermal conductivity. Together with the known seismic anisotropy of the inner core, and the inferred textural alignment of hcp crystals causing it, we suggest some implications that an anisotropy of thermal conductivity of hcp-Fe, and a concomitant anisotropy of inner core heat flow, could have on thermally driven core processes.

2021 ◽  
Author(s):  
Meryem Berrada ◽  
Richard Secco ◽  
Wenjun Yong

<p>Recent theoretical studies have tried to constrain Mercury’s internal structure and composition using thermal evolution models. The presence of a thermally stratified layer of Fe-S at the top of an Fe-Si core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (k<sub>el</sub>), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-8.5wt%Si at core conditions can be related to k<sub>el</sub> using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Unexpected behaviour at low temperatures between 6-8 GPa may indicate an undocumented phase transition. Measurements of ρ at melting seem to remain constant at 127 µΩ·cm from 10-24 GPa, on both the solid and liquid side of the melting boundary. The adiabatic heat flow at the core side of Mercury’s core-mantle boundary is estimated between 21.8-29.5 mWm<sup>-2</sup>, considerably higher than most models of an Fe-S or Fe-Si core yet similar to models of an Fe core. Comparing these results with thermal evolution models suggests that Mercury’s dynamo remained thermally driven up to 0.08-0.22 Gyr, at which point the core became sub-adiabatic and stimulated a change from dominant thermal convection to dominant chemical convection arising from the growth of an inner core. Simply considering the internal structure of Mercury, these results support the capture of Mercury into a 3:2 resonance orbit during the thermally driven era of the dynamo.</p>


Author(s):  
Carol E. Bryant ◽  
James L. Rutledge

Abstract Ceramic matrix composites (CMCs) show promise as higher temperature capable alternatives to traditional metallic components in gas turbine engine hot gas paths. However, CMC components will still require both internal and external cooling, such as film cooling. The overall cooling effectiveness is determined not only by the design of coolant flow, but also by the conduction through the materiel itself. CMCs have anisotropic thermal conductivity, giving rise to heat flow that differs somewhat relative to what we have come to expect from experience with traditional metallic components. Conjugate heat transfer computational fluid dynamics (CFD) simulations were performed in order to isolate the effect anisotropic thermal conductivity has on a cooling architecture consisting of both internal and external cooling. Results show the specific locations and unique effects of anisotropic thermal conduction on overall effectiveness. Thermal conductivity anisotropy is shown to have a significant effect on the resulting overall effectiveness. As CMCs begin to make their way into gas turbine engines, care must be taken to ensure that anisotropy is characterized properly and considered in the thermal analysis.


2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012030
Author(s):  
A N Karim ◽  
B Adl-Zarrabi ◽  
P Johansson ◽  
A Sasic Kalagasidis

Abstract Aerogel-based plasters are composite materials with declared thermal conductivities in the range of traditional insulating materials, i.e. 30-50 mW/(m·K). Based on the results from reported field measurements, aerogel-based plasters can significantly reduce the thermal transmittance of uninsulated walls. However, the in-situ measured thermal conductivities have sometimes been higher than the declared values measured in laboratory and in the main direction of the heat flow. Meanwhile, the anisotropic thermal performance of aerogel-based plasters, i.e., deviating thermal performance in the different directions of heat flow, has not been explored yet. The objective of this study is thus to evaluate the anisotropic thermal conductivity of an aerogel-based plaster. This is done in a set of laboratory measurements using the transient plane source method. Six identical and cubic samples with the dimensions of 10×10×10 cm3 were paired two and two, creating three identical sample sets. In total, 360 measurements of thermal conductivity and thermal diffusivity, and 130 measurements for specific heat capacity were conducted. The results indicate a weak anisotropy of less than ±6.5 % between the three directions (x, y, z). Considering the accuracy of the selected measurement technique, better than ±5 %, supplementary measurements using another technique are recommended.


2019 ◽  
Vol 13 (02) ◽  
pp. 2051001
Author(s):  
Wei-Ying Yang ◽  
Ke-Xian Wang ◽  
Zheng Cao ◽  
Hao-Yang Yu ◽  
Xiao-Bo Ma ◽  
...  

Strontium titanate ([Formula: see text] has the advantages of being non-toxic, environmentally friendly and high-temperature stable, and has potential application in waste heat power generation at medium and high temperature. To explore the impact of TiO2 on the thermoelectric properties of SrTiO3, we synthesized TiO2/La10Nbb10-STO composite powders by hydrothermal method using precursor solution of 10[Formula: see text]mol.% La and 10[Formula: see text]mol.% Nb co-doped STO (La10Nb10-STO) containing TiO2 nanopowders with different molar ratio. After cold pressing and sintering, composite bulk materials were obtained, and their microstructure and thermoelectric transport properties were analyzed. With the increasing TiO2, although the thermal conductivity of TiO2/La10Nb10-STO composite decreased and the Seebeck coefficient increased, the minimum thermal conductivity and the maximum Seebeck coefficient were 2.54[Formula: see text][Formula: see text][Formula: see text] and 215[Formula: see text][Formula: see text]V[Formula: see text][Formula: see text], respectively, at 1000[Formula: see text]K, but the power factor decreased at high temperature due to the apparent decrease of electrical conductivity, resulting in the ZT values being lower than that of La0Nb10-STO without TiO2 addition at high temperature. Significantly, the addition of TiO2 can improve the thermoelectric performance of strontium titanate at low temperature. This approach is expected to improve the ZT of SrTiO3-based thermoelectric material through additional controlling of electrical conductivity.


2020 ◽  
Vol 189 ◽  
pp. 299-305 ◽  
Author(s):  
David H. Olson ◽  
Valentina Angelici Avincola ◽  
Cory G. Parker ◽  
Jeffrey L. Braun ◽  
John T. Gaskins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document