Lithospheric roots beneath western Laurentia: the geochemical signal in mantle garnets

2003 ◽  
Vol 40 (8) ◽  
pp. 1027-1051 ◽  
Author(s):  
D Canil ◽  
D J Schulze ◽  
D Hall ◽  
B C Hearn Jr. ◽  
S M Milliken

This study presents major and trace element data for 243 mantle garnet xenocrysts from six kimberlites in parts of western North America. The geochemical data for the garnet xenocrysts are used to infer the composition, thickness, and tectonothermal affinity of the mantle lithosphere beneath western Laurentia at the time of kimberlite eruption. The garnets record temperatures between 800 and 1450°C using Ni-in-garnet thermometry and represent mainly lherzolitic mantle lithosphere sampled over an interval from about 110–260 km depth. Garnets with sinuous rare-earth element patterns, high Sr, and high Sc/V occur mainly at shallow depths and occur almost exclusively in kimberlites interpreted to have sampled Archean mantle lithosphere beneath the Wyoming Province in Laurentia, and are notably absent in garnets from kimberlites erupting through the Proterozoic Yavapai Mazatzal and Trans-Hudson provinces. The similarities in depths of equilibration, but differing geochemical patterns in garnets from the Cross kimberlite (southeastern British Columbia) compared to kimberlites in the Wyoming Province argue for post-Archean replacement and (or) modification of mantle beneath the Archean Hearne Province. Convective removal of mantle lithosphere beneath the Archean Hearne Province in a "tectonic vise" during the Proterozoic terminal collisions that formed Laurentia either did not occur, or was followed by replacement of thick mantle lithosphere that was sampled by kimberlite in the Triassic, and is still observed there seismically today.

Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Elektron EQ21 is a casting high strength magnesium alloy developed as a heat treatable alloy with rare earth element additions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-80. Producer or source: Magnesium Elektron Wrought Products, North America.


1984 ◽  
Vol 75 (2) ◽  
pp. 259-273 ◽  
Author(s):  
W. E. Stephens ◽  
A. N. Halliday

ABSTRACTNew major- and trace-element data for granitoid plutons from the Grampian Highlands, the Midland Valley and the Southern Uplands of Scotland are presented and discussed. The study is restricted to ‘late granitoids’ (all younger than 430 Ma); the term ‘granitoid’ is used in a wide sense to encompass all plutonic components of a zoned intrusion of this age, sometimes including diorites and ultrabasic cumulate rocks. The data indicate that as a whole the province is chemically high-K calc-alkalic. Other notable enrichments are in Sr and Ba, and a marked geographical difference in these trace-elements is found between plutons of the SW Grampian Highlands and those of the Southern Highlands, the Midland Valley, and the Southern Uplands. Plutons of the NE Highlands tend to be more geochemically evolved than those further SW and those of the Midland Valley and Southern Uplands.When petrographical and geochemical data are considered, three plutonic suites are recognised: (1) the Cairngorm suite comprising plutons of the NE Highlands, (2) the Argyll suite comprising plutons from the SW Highlands, and (3) the S of Scotland suite comprising plutons from the Southern Highlands, Midland Valley and the Southern Uplands excluding Criffell and the Cairnsmore of Fleet. It is proposed that the more acidic granitoids are dominantly the products of I-type crustal sources, but certain diorites and the more basic members of zoned plutons have a substantial mantle component. The elevated Sr and Ba levels in granitoids of the Argyll suite may reflect the influence of incompatible-element-rich fluids from the mantle in the petrogenesis of this suite. The relatively anhydrous pyroxene-mica diorites of the S of Scotland suite are richer in Ni and Cr and appear to represent mantle-derived melts. The relationships between these data and already published isotopic data are discussed.


1990 ◽  
Vol 27 (1) ◽  
pp. 57-71 ◽  
Author(s):  
D. C. Gosselin ◽  
J. J. Papike ◽  
C. K. Shearer ◽  
Z. E. Peterman ◽  
J. C. Laul

The Little Elk Granite (2549 Ma) and granite at Bear Mountain (BMG) (~2.5 Ga) of the Black Hills formed as a result of a collisional event along the eastern margin of the Wyoming Province during the late Archean. Geochemical modelling and Nd isotopic data indicate that the Little Elk Granite was generated by the partial melting of a slightly enriched (εNd = −1.07 to −3.69) granodioritic source that had a crustal residence time of at least 190 Ma. The medium-grained to pegmatitic, peraluminous, leucocratic BMG was produced by melting a long-lived (>600 Ma), compositionally variable, enriched (εNd = −7.6 to −12.3) crustal source. This produced a volatile-rich, rare-earth-element-poor magma that experienced crystal–melt–volatile fractionation, which resulted in a lithologically complex granite.The production of volatile-rich granites, such as the BMG and the younger Harney Peak Granite (1715 Ma), is a function of the depositional and post-depositional tectonic environment of the sedimentary source rock. These environments control protolith composition and the occurrence of dehydration and melting reactions that are necessary for the generation of these volatile-rich leucocratic granites. These types of granites are commonly related to former continental–continental accretionary boundaries, and therefore their occurrence may be used as signatures of ancient continental suture zones.


2010 ◽  
Vol 84 (3) ◽  
pp. 614-623 ◽  
Author(s):  
Guangzhou MAO ◽  
Renmin HUA ◽  
Jianfeng GAO ◽  
Kuidong ZHAO ◽  
Guangming LONG ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Tan ◽  
Qigui Mao ◽  
Mingjie Yu ◽  
Yan Sun ◽  
Xiaoqiang Lv

The Tuwu porphyry copper deposit is located on the Dananhu-Haerlik island arc in eastern Tianshan, NW China. Based on geology, petrology, and in situ trace element studies of pyrite and chlorite, we redefined the characteristics of hydrothermal fluids and the following three mineralization stages: premineralization stage (stage Ⅰ), porphyry metallogenic stage (stage Ⅱ), and superimposed transformation stage (stage Ⅲ). Pyrite stage Ⅰ (Py-I) has the highest Co/Ni ratios, and the precipitation crystallization of chlorite (Chl-I2) has the similar rare earth element distribution patterns with those of volcanic rocks Carboniferous Qieshan (CQ), indicating intense volcanic hydrothermal activity. The Co/Ni ratios of Py-II1 and Py-II2 (stage Ⅱ) tend to decrease over time. Moreover, the rare earth element (REE) distribution patterns of Chl-II have similar LREE enrichment, and the Eu anomalies in Chl-II1, Chl-II2, and Chl-II3 range from positive to negative. The initial ore-forming fluid was mainly magmatic hydrothermal fluid, and with the late-stage addition of meteoric water and continuous sulfide precipitation, the trace element composition of the fluid changed, and the whole system became more oxidizing. Py-III (stage Ⅲ) has the lowest Co/Ni ratios, and the REE distribution pattern of Chl-III is characterized by LREE enrichment. Moreover, the Chl-III shows obvious shear deformation characteristics. The results indicate that the host rocks experienced intensely superimposed reformation. By combining and integrating our results with the regional evolution processes in the eastern Tianshan, we propose that the Tuwu porphyry deposit has undergone magmatic hydrothermal and metamorphic hydrothermal processes. Volcanism (stage Ⅰ) provided the space and initial conditions for the emplacement of the metallogenic body. With the emplacement of the plagiogranite porphyry (stage Ⅱ), the main copper mineralization occurred in the porphyry and surrounding rocks. After porphyry mineralization (stage Ⅲ), regional ductile shearing and collisional compression led to a copper reaction, and its accumulation along the faults formed an ore shoot.


2019 ◽  
Vol 114 (8) ◽  
pp. 1569-1598
Author(s):  
Ryan D. Taylor ◽  
Anjana K. Shah ◽  
Gregory J. Walsh ◽  
Cliff D. Taylor

Abstract The iron oxide-apatite (IOA) deposits of the eastern Adirondack Highlands, New York, are historical high-grade magnetite mines that contain variable concentrations of rare earth element (REE)-bearing apatite crystals. The majority of the deposits are hosted within sodically altered Lyon Mountain granite gneiss, although some deposits occur within paragneiss, gabbro, anorthosite, or potassically altered Lyon Mountain granite gneiss. The IOA deposits and the waste and/or tailings piles associated with them have potential as an unconventional resource for REEs. Reprocessing of these piles would have the advantage of partial recycling of the waste material to produce a set of critical elements. Thirty-four ore, nine rock, 25 waste-pile, and four tailings-pile samples were collected and analyzed for major, minor, and trace elements. At the tailings- and waste-pile sites, composite samples were collected by combining 30 to >50 subsamples randomly distributed over each pile. The total REE content of the waste and tailings piles varied from approximately 10 to 22,000 ppm, whereas the ore sample concentrations ranged from approximately 15 to 48,000 ppm total REEs. A positive correlation exists between the total REE content of ore and its associated waste pile. Median light REE/heavy REE values were 2.14 for waste/tailings piles and 2.25 for ore, which is a substantial relative enrichment in the heavy REEs in comparison to many developed REE mines, such as the mined carbonatites of Bayan Obo, China, and Mountain Pass, California. Importantly, the ore and waste samples are significantly enriched in both Y and Nd compared to other REEs in the samples. Other minor components such as Th are also elevated. Airborne radiometric surveys show large positive eTh and eU anomalies corresponding to tailings piles. Although it is a limited data set, geochemical data of unaltered and altered host rocks suggest a speculative new model for IOA ore formation in the Adirondack Highlands that is consistent with the geology and previously published data. The ferroan ore-hosting Lyon Mountain granite gneiss underwent localized potassic alteration that enriched the altered rock in Fe, REEs, Th, and other metals. A later sodic alteration event affected the previously potassically altered Lyon Mountain granite gneiss, which increased rock porosity and remobilized Fe, REEs, and other elements from the host rock into the iron ore seams. The sodic fluids responsible for ore formation were enriched in F and Cl.


Sign in / Sign up

Export Citation Format

Share Document